Forward Model Simulation of Swell Effects in SMAP Near-Coastal High-Resolution NRCS Data

03/23/2021

Shanka Wijesundara Joel Johnson

Electroscience Laboratory The Ohio State University, Columbus OH, USA

Motivation

- Radar observations of the sea surface can provide information on key geophysical parameters such as :
 - Wind speed + Wind direction
 - Ocean wave properties (effects are second order)
- Recent L-band radar systems have also demonstrated a wind retrieval capability based on empirically-derived Geophysical Model Functions (GMFs)
 - PALSAR (single pol, high spatial resolution)
 - Aquarius (multi-pol, multi-angle, resolution O (100 km))
 - SMAP (multi-pol, single angle, wind retrievals shown at ~ 30 km resolution)
- SMAP radar also provides a 1 km resolution product called "L1C data"
 - Do these provide additional higher resolution information on ocean winds or waves?
 - Can possible swell wave effects be modeled using approximate EM scattering models?

<u>Objectives</u>

- 1) Forward model SMAP L1C data using approximate EM scattering models
- 2) Investigate the presence and impact of ocean swell waves on SMAP L1C data

Outline

Motivation

SMAP mission overview

Forward Modeling of SMAP L1C Data

Results

Concluding remarks

Soil Moisture Active/Passive (SMAP) Mission

SMAP L1C Near-Coastal Global Coverage

- Objective: provide accurate soil moisture and freeze/ thaw measurements over land surfaces
- L-band radar (1.26 GHz) and L-band radiometer (1.41 GHz)
- Global revisit rate: 2-3 days
- Multiple radar polarizations: HH, VV, HV (operated for ~ 3 months)
- Two high- and low-resolution SAR radar data products
 - L1B 30 km multi-looked SAR imagery
 - L1C 1 km multi-looked SAR imagery
- Over 3 TB of L1C data from the operation window available for analysis

[1] http://smap.jpl.nasa.gov/resources/59/

THE OHIO STATE UNIVERSITY COLLEGE OF ENGINEERING

Forward Modeling Overview

- Wind Spectrum: Based on the Durden-Vesecky (DV) spectrum
- Swell Spectrum: Based on the JONSWAP spectrum
- EM Model: Two-scale (composite) model (co-pol); SSA2-HF (cross-pol)
- Represents swell effects as an additional slope contribution

• Two-scale Model $\sigma \downarrow 0 \uparrow SEA(\theta) \downarrow ij = \int -\infty \uparrow \infty \ d(\tan \psi) \int -\infty \uparrow \infty \ d(\tan \delta) \sigma \downarrow ij \uparrow'(\theta \uparrow') P(\tan \psi, \tan \delta) W(2k \downarrow 0 \sin \theta \uparrow')$

- ψ : In-plane tilting; δ : Out-of-plane tilting; θ : Incidence angle
- $\sigma \downarrow ij \uparrow'(\theta)$: Tilted, rotated backscatter coefficients combing first order SPM kernels in multiple polarizations
- $P(\tan\psi, \tan\delta)$: Slope PDF of large-scale roughness due to wind
- $W(\cdots)$: Spectrum model (based on the DV spectrum)
- Cutoff wavenumber: $k\downarrow c = k\downarrow 0/2$
- Integration over slope PDF performed numerically
 - Additional swell-induced contributions to slope variances can also be included
- Captures "tilt" effects on co-pol returns as well as tilt-induced creation of cross-pol backscatter
 - Neglects second order multiple scattering cross-pol contributions however

G. R. Valenzuela, "<u>Theories for the Interaction of Electromagnetic and Oceanic Waves | A</u> <u>Review</u>," *Boundary-Layer Meteorology*, vol. 13, no. 1, pp. 61-85, Jan 1978.

- SSA2-HF Model
 - TSM does not account for second-order scattering effects
 - Use of SSA2 constrained by its computational complexity
 - Use SSA2-HF proposed by C. A. Guerin and J. T. Johnson in 2015

$\sigma \downarrow h v \uparrow 0 = 4\pi |G| \uparrow 2 \cot \uparrow 2 \theta \downarrow i \ Q \downarrow H \uparrow 4 \ W(Q \downarrow H) s \downarrow y \uparrow 2$

- $Q \downarrow H = 2k \downarrow 0 \sin \theta \downarrow i$
- *G*: A function of permittivity
- $s\downarrow y12$: Cross-plane slope variance

$s\downarrow y\uparrow 2 = \int 0\uparrow 2\pi \# \int 0\uparrow k\downarrow 0 \# k\uparrow 2\sin \uparrow 2\phi S(k,\phi)kdkd\phi$

C. Guerin and J. T. Johnson, "<u>A Simplied Formulation for Rough Surface Cross-Polarized Backscattering Under</u> the Second-Order Small-Slope Approximation," *IEEE Transactions on Geoscience and Remote Sensing*, vol. 53, no. 11, pp. 6308-6314, Nov 2015

Truth Data – Constructing a NRCS vs. Wind Match-up Dataset

SMAP Quality Flags

Data Processing Steps

- Apply SMAP Quality flags
- Use NOAA GFS operational winds through WW3 model
 - Available over multiple resolutions
 - Primarily use *glo_30m*
- Degrade SMAP spatial resolution to WW3 wind resolution using a nearest neighbor algorithm
- Apply user-defined spatial filters to minimize contamination due to land clutter and sea ice
- Results in a NRCS vs. Wind match-up dataset

Truth Data – SMAP-based Scatter plots and GMFs

- GMF: 2nd order cosine-series Zhou et. al, JSTARS 2017; based on SMAP L1B data
- GMF captures the SMAP backscatter NRCS scatter density data more accurately compared to TSM model predictions using the fully-developed wind-driven DV spectrum
 - Model underestimates; the dependence of this underestimation on polarization and wind speed indicate the presence of swell waves
 - GMF includes swell effects

- Model Assumptions:
 - Wind seas driven by local winds sources
 - Swell seas driven by remote winds sources
 - Two contributions are independent
- Slope variances (second-order moments) add linearly

$$S(k,\phi) = S\downarrow w (k,\phi) + S\downarrow s (k,\phi)$$
$$s\downarrow x \uparrow 2 = s\downarrow \{x,w\} \uparrow 2 + s\downarrow \{x,$$
$$s\downarrow y \uparrow 2 = s\downarrow \{y,w\} \uparrow 2 + s\downarrow \{y,w\}$$

 $s\downarrow\{x,y\}$ ¹2 = $\int 0$ ¹2 π $\iint 0$ ¹ $k\downarrow c$ k¹2 {cos¹2 ϕ , sin¹2 ϕ }*S*(k,ϕ) $kdkd\phi$

- Captures swell-effects as an excess slope contribution
 - Introduces additional tilting of Bragg waves under TSM
- Need swell-only slope variances
 - Can leverage existing models (WW3, ECMWF, ect...), but MSS is not publically available
 - Compute 2-D swell-only spectrum $S \downarrow_S (k, \phi)$
- Latter approach pursued

2D Swell Spectrum : JONSWAP Spectrum with WW3 Partitioned Data

Swell spectrum definition: $S\downarrow_S(f,\phi)=\sum n\uparrow IIIIS\downarrow_S, n(f,\phi)$

 $S \downarrow s, n(f, \phi) = 1/f S \downarrow s, n(f) \Psi \downarrow s(f, \phi)$

• 1D Spectrum – Use JONSWAP Spectrum:

 $S \downarrow s (f) = C \downarrow 0 g \uparrow 2 (2\pi) \uparrow -4 f \uparrow -5 e \uparrow -1.2$ $f = f/f \downarrow m$ $G = e \uparrow - (f - f \downarrow m) \uparrow 2 / 2\sigma \uparrow 2 f \downarrow m \uparrow 2$

• Spreading Function: Use \cos^{2s} form $\Psi \downarrow s (f, \phi) = A \downarrow 0 \cos 12 s [(\phi - \phi \downarrow m)/2]$ $s = 2/\sigma \downarrow \phi \uparrow 2 - 1$

COLLEGE OF ENGINEERING

Modeled 2D Swell Spectrum – Comparison with Buoy Spectra

• Modeled swell-only spectra capture swell contributions reasonably accurately in both magnitude and direction. They can be numerically integrated to compute swell-only slope variances

Initial Results

- All polarizations respond to swell in varying degrees
 - VV very limited response to swell
 - HV swell observations are limited by system noise (-38 dB noise added)
 - HH clear response to swell proceed further
- Model refinements
 - Fetch limited seas and low wind correction term

Model Refinements

- Fetch-limited seas
 - Observed under high winds and over near-coastal regions
- Modeled using $\Omega \! \downarrow \! c$
 - Elfouhaily Wave age parameter
 - $\Omega \downarrow_{\mathcal{C}} = 0.84$: Fullydeveloped
- Also added a low-wind correction term to the DV spectrum

THE OHIO STATE UNIVERSITY COLLEGE OF ENGINEERING

Results: Model vs. SMAP NRCS Comparison For a Single Pass

- Modeled NRCS values within $\pm 1~{\rm dB}$ of SMAP data increases from 23% for wind-only mode to 85% for wind + swell model

15

Results: Swell Prediction Comparison

- Swell features present in SMAP data are captured by model results (indicated using black circles)
- SMAP also presents features that the WW3 model does not capture (red circles)
 - The prediction capability is ultimately limited by the quality of the WW3 predictions

THE OHIO STATE UNIVERSITY COLLEGE OF ENGINEERING

Results: Model Backscatter NRCS at SMAP L1C Resolution

• High-resolution model results are in agreement with observations thus far

17

Cumulative HH Results

- Model predictions between ± 1 dB of SMAP measurements improve significantly
 - From 39% to 65%
- A mean NRCS increase of 2 *dB* observed
- Wind + Swell model distribution mean aligns with SMAP mean
 - Variance is constrained by the wind model

Inverse Problem: Swell Retrieval

- The SMAP and Wind + Swell model excess NRCS can be mapped to an excess swell
 - Many-to-one mapping
 - 2-D mapping space varies with wind speed and azimuth

Inverse Problem: Swell Retrieval – Initial Results

- Initial results are encouraging
 - Retrieved swell captures some of swell features
 - Note: Retrieved vs. modeled MSS scales are different
- More analysis required

Summary/Conclusions

- SMAP high-resolution (L1C) backscatter NRCS data over near-coastal regions modeled using physical models
 - TSM and SSA2-HF models used for backscatter NRCS modeling
- A combined wind + swell spectrum used to characterized the ocean surface
 - Wind: Durden-Vesecky-based spectrum
 - Swell: JONSWAP-based spectrum
 - Swell effects represented as an excess slope
- SMAP data forward modeled using the wind + swell model
 - The model improves backscatter NRCS predictions
 - Captures swell effects reasonably well
 - Initial indications for possible swell retrieval
- Future work:
 - Further refine the model increase the prediction accuracy
 - Compare and contrast modeled and retrieved swell MSS using those predicted by a numerical wave model

Thank You

