
S T A T I S T I C A L  D O W N S C A L I N G  O F  T H E  
S I G N I F I C A N T  W A V E  H E I G H T  

S A I D  O B A K R I  𝐌 ↑ 𝟏 , 𝟐    

C O - A U T H O R S :  V A L É R I E  M O N B E  T ↑ 1   ,  N I C O L A S  

R A I L L A R  D ↑ 2   ,  A N D  P I E R R E  A I L L I O  T ↑ 3     
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M O T I VAT I O N  
 

q  Wave climate characterization is important for a wide number of 
marine activities  

q  GCMs (general circulation models) provide future projections for 
atmospheric variables with coarse spatial resolution  

q  GCMs simulate wind but not sea state parameters  

q Statistical and dynamical downscaling models bridge the gap 
between GCM simulations and decision makers requirements  

 

 



 

q Statistical downscaling models construct an empirical relationship 
between large scale  and local scale variables using historical data  

q Assuming that this relationship is stationary, future projections can 
be made using GCM simulations of the large scale variables  

q This makes statistical downscaling models computationally efficient  

q For a rigorous comparaison between statistical and dynamical 
methods  we refer to the studies Wang et al.  (2010)[1] and  Laugel  
etal.  (2014)[2]  

 
Before using climate model simulations for making projections with statistical 
downscaling models, bias correction methods are needed. And this is not the 
focus of this study 



O B J E C T I V E S  
 

q Establish a statistical link function between the wind and the significant 
wave height 

q  Predictand: the significant wave height (Hs) from the hindcast 
database Homere       

   

q  Predictors:  wind data from the ERA5 reanalysis dataset  
 

q  Method: linear regression with a suitable penalization method 

q The relationship has to be physically interpretable  



D ATA  
q  Hindcast database Homere:  

v  Sea state hindcast database, based on 
WAVEWATCH III 

v  High resolution grid with one hour time step 

v  From 1994 to 2019 

v  The wind forcing: CFSR  

 

q  ERA5 reanalysis database: 

v  Hourly wind components with 0.25°×0.25° 

    spatial resolution 



 

q High dimensionality of the input 
space 

q Multicollinearity 
q The statistical downscaling 

model has to take into 
consideration the sea state 
composition (wind sea – 
swells) 

q Non-instantaneous and non-
local relationship between wind 
and waves 

 

C H A L L E N G E S  

 

The location of interest is situated at the Bay of Biscay at 
45.2°N, 1.6°W 

          

         The zonal wind component  



E X I S T I N G  W O R K  
 

q  Camus et al.  (2014b)[3] used a weather types model to downscale 
wave parameters in north-west of Spain. To account for the swell 
composition, the predictor was defined as the three-daily mean of sea 
level pressure and pressure gradients 

q  Perez et al. 2014[4] proposed a method, called ESTELA, that defines 
the wave generation area and wave travel time at any location 
worldwide 

q  Camus et al.(2014a)[5] and  Herermiller et al.  (2016)[6] used the 
ESTELA approach to define the predictors for their statistical 
downscaling approach  

 

 



T H E  M O D E L   

                       Hs = X↑L β↑L + X↑G β↑G +ϵ    (1) 

q  Hs: significant wave height  

q  X↑L 𝑒𝑡 X↑G : local and global predictors  

q  β↑L  et  β↑G  : local and global coefficients  

q  ϵ:  model error  



T H E  P R E D I C T O R S   

q  The global predictor 𝐗↑𝐆  is defined as the projected wind: the wind 
components at each grid point are projected into the bearing of the target point 
in a great circle path  

q  The local predictor 𝐗↑𝐋  is defined based on the wind speed and the fetch at the 
local      point  



𝑊=√𝑢↑2 + 𝑣↑2  cos↑2  ( 1/2 𝛽)  
𝛽=𝑏 −𝜃 
𝜃= atan (𝑢/𝑣 )  
 

q  where W is  the  projected  wind, u 
and v the   wind components, b is the 
great circle bearing, and 𝜃 is the wind 
direction  



The projected wind 



 

q  The spatial coverage of 𝑿↑𝑮 : assuming that waves travel along a great circle path, grid 
points whose path is blocked by land are neglected  

q  The temporal coverage of 𝑿↑𝑮  is defined by two parameters, called travel time of waves 
𝑡↓𝑗  and the temporal width  𝛼↓𝑗 , using a fully data-driven approach  

 

q  At time t the global predictor 𝑿↑𝑮  is defined as: 

             𝑋↑𝐺 (𝑡)=  { ¯𝑊 ↓1↑2 (𝑡− 𝑡↓1 − 𝛼↓1 :𝑡− 𝑡↓1 + 𝛼↓1 ),…, ¯𝑊 ↓𝑗↑2 (𝑡− 𝑡↓𝑗 − 𝛼↓𝑗 :𝑡− 𝑡↓𝑗 + 𝛼↓𝑗 ),.., ¯𝑊 ↓𝑚↑2 (𝑡− 𝑡↓𝑚 
− 𝛼↓𝑚 :𝑡− 𝑡↓𝑚 + 𝛼↓𝑚 )} 

    

q  Where ¯𝑊 ↓𝑗↑2 (𝑡− 𝑡↓𝑗 − 𝛼↓𝑗 :𝑡− 𝑡↓𝑗 + 𝛼↓𝑗 ) is the mean of the squared projected wind at location j 
in a time window controlled by 𝛼↓𝑗  and 𝑡↓𝑗   



 

 

 

 

q  𝛼↓𝑗  and 𝑡↓𝑗  are estimated as follows : 

( 𝑡↓𝑗  , 𝛼↓𝑗  )=𝑎𝑟𝑔𝑚𝑎𝑥 𝑐𝑜𝑟(𝐻𝑠, ¯𝑊 ↓𝑗↑2 (𝑡− 𝑡↓𝑗 − 𝛼↓𝑗 :𝑡− 𝑡↓𝑗 + 𝛼↓𝑗 )) 
  
 

  



 

The estimated temporal width   𝛼↓𝑗   
 

The estimated travel time  𝑡↓𝑗   





q  However, in the case of high 
multicollinearity, the matrix 𝑋↑𝑇 𝑋 
may be ill-conditioned  

q  The least squares estimates 
have low bias and high variance 
which affects the prediction 
accuracy of the model 

 

M O D E L  E S T I M AT I O N   
q The model 𝑌=𝑋𝛽+𝜖 can be estimated using least squares so that   𝛽 ↑𝑙𝑠  =  (𝑋↑𝑇 𝑋)↑−1  
𝑋↑𝑇  𝑌 



q To address this issue,  Ridge regression shrinks the coefficients by imposing a penality 
on the residual sum of squares so that : 

𝛽 ↑𝑟𝑖𝑑𝑔𝑒 =𝑎𝑟𝑔𝑚𝑖𝑛 ||𝑋𝛽−𝑌||↓2 ↑2 +𝜆||𝛽||↓2 ↑2         (2) 

q The solution of (2) is  𝛽 ↑𝑟𝑖𝑑𝑔𝑒 =  (𝑋↑𝑇 𝑋+𝜆𝐼)↑−1  𝑋↑𝑇 𝑌 . Ridge thus, adds positive elements 
to the diagonal of 𝑋↑𝑇 𝑋 before inversion 

q  In fact Ridge shrinks all the EOFs of 𝑋 and a high amount of shrinkage is applied to 
EOFs with small variance  

q  We extend this to the general case where  𝛽 ↑𝐸𝑟𝑖𝑑𝑔𝑒 =  (𝑋↑𝑇 𝑋+𝜆Δ)↑−1  𝑋↑𝑇 𝑌 where Δ is the 
penality matrix. Δ can be interpreted as a prior on 𝛽 

q  LASSO  is another shrinkage method. Instead of using the norm 2 in (2) it uses the 
norm 1 so that 

𝛽 ↑𝑙𝑎𝑠𝑠𝑜 =𝑎𝑟𝑔𝑚𝑖𝑛 ||𝑋𝛽−𝑌||↓2 ↑2 +𝜆||𝛽||↓1  



q The penalized version of the model (1) can be written as: 

( 𝛽 ↑𝐿 , 𝛽 ↑𝐺 )=argmin ||𝑋↑𝐿 𝛽↑𝐿 + 𝑋↑𝐺 𝛽↑𝐺 −𝐻𝑠||↑2 +𝜆 𝛽↑𝐺 ↑𝑇 Δ𝛽↑𝐺  

 

q  In this study,  we suppose that β↑G  is smooth and has the same EOFs 
as 𝑋↑𝐺  and we choose Δ= (𝑋↑𝑇 𝑋)↑𝛼  and 𝜆  and 𝛼 are selected using cross 
validation 

 

 

M O D E L  E S T I M A T I O N   



 

q The period from 1994 to 2012 is used to estimate the parameters 𝛽 ↑𝐿   
𝑎𝑛𝑑  𝛽 ↑𝐺  

q 2013 to 2016 is used to select the tuning parameters  

q 2016 to 2019 is used as a validation period  



R E S U L T S   







C O M P A R A I S O N  W I T H  O T H E R  M E T H O D S  

               R RMSE              BIAS 

Ridge              0.96             0.317            0.03 

LASSO              0.96             0.318            0.03 

Extended Ridge 
 

             0.961             0.313            0.03 



T H E  E S T I M A T E D    𝛽   ↑ 𝐺    U S I N G  
L A S S O  



T H E  E S T I M A T E D    𝛽   ↑ 𝐺    U S I N G  T H E  E X T E N D E D  
R I D G E   

q  Endeed, the 𝜆 (the smoothness 
parameter) choosed by cross 
validation does not give the desired 
smoothness 

q  By using larger values of 𝜆, the 
resulted coefficients are smooth 
however; the prediction accuracy get 
worse  

q  Trade off between model 
interpretability and model prediction 
accuracy? 



C O N C L U S I O N  

q  A statistical downscaling model that links the large-scale wind and the local-
scale wave parameter (Hs) was proposed  

 

q  Predictors definition is a crucial step in the statistical downscaling framework  

 

q  The validation analysis proves the model’s skill in predicting wave climate 

q  Working on the trade off between prediction accuracy and interpretability  
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