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1 Introduction 

1.1 Scope of this document 

This document holds the End-to-End ECV Uncertainty Budget (E3UB) prepared by CCI+ Salinity 
team, as part of the activities included in the [WP240] of the Proposal (Task 2 from SoW ref. ESA-
CCI-PRGM-EOPS-SW-17-0032).  

SSS measurements are available from three L-Band radiometer satellite missions, SMOS, 

Aquarius and SMAP, each with very different instrument features leading to particular 

measurement characteristics.  The Climate Change Initiative Salinity project (CCI+SSS) aimed to 

produce SSS Climate Data Record (CDR) to include satellite measurements together with well 

documented uncertainties. To establish a homogeneous CDR, instrumental differences are 

carefully controlled by analysing SSS discrepancies, then adjusted based on deepened analysis of 

the satellite measurements themselves together with independent reference data. This document 

describes the basis for the uncertainties characterizations. 

1.2 Structure of the document 

The E3UB is structured as follows: 

This document is composed of 4 major sections: 

✓ Section 2: Sensor main characteristics 

✓ Section 3: L1 uncertainty characterization 

✓ Section 4: L2 uncertainty characterization 

✓ Section 5: L3 and L4 uncertainty budget 

L2/L3/L4 data sets will be provided each year and are described in the SRD.  

This is the third version of the E3UB document addressing Year 3 activity.  

1.3 References 

1.3.1 Applicable Documents 

ID Document Reference 

AD01 CCI+ Statement of Work SoW 

AD02 Product User Guide (PUG) SSS_cci-D4.3-PUG-v3.0 

AD03 User Requirement Document (URD) SSS_cci-D1.1-URD-v2.0 

AD04 Product Specification Document (PSD) SSS_cci-D1.2-PSD-v2.0 
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ID Document Reference 

AD05 Algorithm Theoretical Baseline Document  SSS_cci-D2.3-ATBD_L3_L4-i1r0_v1.1 

AD06 End-to-End ECV Uncertainty Budget (E3UB), version 1 SSS_cci-D2.3-E3UB_v1.2 

AD07 Algorithm Theoretical Baseline Document, version 2  SSS_cci-D2.3-ATBD_L3_L4-i1r0_v2.0 

AD08 End-to-End ECV Uncertainty Budget (E3UB), version 2 SSS_cci-D2.3-ATBD_L3_L4-i1r0_v2.2 

AD09 Algorithm Theoretical Baseline Document, version 3  SSS_cci-D2.3-ATBD_L3_L4-i1r0_v3.0 

1.3.2 Reference Documents 

ID Document Reference 

RD01 Boutin, J., N. Martin, N. Kolodziejczyk, and G. Reverdin (2016a), Interannual 
anomalies of SMOS sea surface salinity, Remote Sensing of Environment, 
doi:http://dx.doi.org/10.1016/j.rse.2016.02.053 

 

RD02 Kolodziejczyk, N., J. Boutin, J.-L. Vergely, S. Marchand, N. Martin, and G. 
Reverdin (2016), Mitigation of systematic errors in SMOS sea surface salinity, 
Remote Sensing of Environment, 
doi:http://dx.doi.org/10.1016/j.rse.2016.02.061. 

 

RD03 Evaluation of measurement data – Guide to the expression of uncertainty in 
measurement, JCGM 100:2008 

 

RD04 SMOS ATBD L2OS v3.13, 29 April 2016 SO-TN-ARG-GS-0007 

RD05 AQ-014-PS-0017_Aquarius_L2toL3ATBD_DatasetVersion5.0 

Liang Hong, Normal Kuring, Joel Gales and Fred Patt  

 

  

RD06 AQ-014-PS-0018_AquariusLevel2specification_DatasetVersion5.0 

Fred Patt,  Liang Hong 

 

RD07 SMAP_RemSSS_Release_V2.0  

RD08 Meissner, T. and F. J. Wentz, 2016: Remote Sensing Systems SMAP Ocean 
Surface Salinities [Level 2C, Level 3 Running 8-day, Level 3 Monthly], Version 
2.0 validated release. Remote Sensing Systems, Santa Rosa, CA, USA. 
Available online at www.remss.com/missions/smap, doi: 10.5067/SMP20-
2SOCS (L2C files). 

 

RD09 Boutin J., J.-L. Vergely, S. Marchand, F. D'Amico,  A. Hasson, N. Kolodziejczyk, 
N. Reul, G. Reverdin, J. Vialard (2018), New SMOS Sea Surface Salinity with 
reduced systematic errors and improved variability, Remote Sensing Of 
Environment, doi:http://dx.doi.org/10.1016/j.rse.2018.05.022 

 

RD10 Thomas Meissner + Frank Wentz Remote Sensing Systems, Santa Rosa, CA, 
RSS SMAP Salinity: Version 2 Validated Release. Algorithm Theoretical Basis 
Document (ATBD),   September 13, 2016 

RSS Technical Report 
091316  

RD11 Dinnat, E., D. Le Vine, J. Boutin, T. Meissner, and G. Lagerloef. 2019. "Remote 
Sensing of Sea Surface Salinity: Comparison of Satellite and In Situ 
Observations and Impact of Retrieval Parameters." Remote Sensing, 11 (7): 
750 

 

https://science.gsfc.nasa.gov/sed/index.cfm?fuseAction=people.jumpBio&iphonebookid=7346
https://science.gsfc.nasa.gov/sed/index.cfm?fuseAction=people.jumpBio&iphonebookid=13391
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ID Document Reference 

RD12 C. J. Merchant et al. (2017): Uncertainty information in climate data records 
from Earth observation, Earth Syst. Sci. Data, 9, 511-527 

 

RD13 Brodzik, M. J., B. Billingsley, T. Haran, B. Raup, and M. H. Savoie (2012), 
EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded 
Data Sets, ISPRS International Journal of Geo-Information, 1(1), 32-45. 

 

RD14 Le Vine, D. M., and P. de Matthaeis (2014), Aquarius active/passive RFI 
environment at L-band, IEEE Geosci. Remote Sens. Lett., 11(10), 
doi:10.1109/LGRS.2014.2307794.  

 

  



 

Climate Change Initiative+ (CCI+) 
Phase 1 

 

End-to-End ECV Uncertainty Budget 

Ref.: ESA-CCI-PRGM-EOPS-SW-17-0032 

Date:  13/09/2021 

Version : v3.1 

Page: 13 of 46 

 

© ARGANS Ltd. 2021 

1.4 Acronyms 

AD  Applicable Document 

ADP   Algorithm Development Plan 

AOPC  Atmospheric Observation Panel for Climate 

AR  Assessment Report (of the IPCC) 

AR6   IPCC Scientific Assessment Report 6 

ATBD   Algorithm Theoretical Basis Document 

Aquarius NASA mission 

C3S   Copernicus Climate Change Service 

CAR   Climate Assessment Report 

CCI The ESA Climate Change Initiative (CCI) is formally known as the Global Monitoring 
for Essential Climate Variables (GMECV) element of the European Earth Watch 
programme 

CCI+ Climate Change Initiative Extension (CCI+), is an extension of the CCI over the 
period 2017–2024 

CDR   Climate Data Record 

CEOS   Committee on Earth Observation Satellites 

CFOSAT Chinese French Oceanography Satellite 

CGMS   Coordination Group for Meteorological Satellites 

CliC  World Climate Research Programme - Climate and Cryosphere Project 

CLIVAR  WCRP Climate Variability and Predictability project 

CMEMS Copernicus Marine Environmental Monitoring Service 

CMIP   Coupled Model Intercomparison Project 

CMUG   Climate Modelling User Group 

COP   Conference of the Parties 

COWCLIP Coordinated Ocean Wave Climate Project (of JCOMM) 
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CR   Cardinal Requirement 

CRDP   Climate Research Data Package 

CRG   Climate Research Group 

CSCDA  Copernicus Space Component Data Access System 

CSWG   Climate Science Working Group 

DARD   Data Access Requirements Document 

DEWG   Data Engineering Working Group 

DOI   Digital Object Identifier 

DPM   Detailed Processing Model 

DTBT3   Database for Task 3 

DUE   Data User Element 

E3UB   End-to-End ECV Uncertainty Budget 

EC   European Commission 

ECMWF  European Centre for Medium Range Weather Forecasts 

ECSAT   European Centre for Space Applications and Telecommunications 

ECSS   European Cooperation for Space Standardization 

ECV   Essential Climate Variable 

EO   Earth Observation 

EOV  Essential Ocean Variable (of the OOPC) 

ESGF  Earth System Grid Federation 

ESM  Earth System Model 

EU  European Union 

FCDR   Fundamental Climate Data Record 

FIDUCEO  Fidelity and uncertainty in climate data records from Earth Observations 

FOV  Field Of View 
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FP7  EU Framework Programme 7 

FRM   Fiducial Reference Measurements 

GAIA-CLIM  Gap Analysis for Integrated Atmospheric ECV CLImate Monitoring 

GEO   Group on Earth Observations 

GCOS   Global Climate Observing System 

GCW  Global Cryosphere Watch 

GMECV Global Monitoring of Essential Climate Variables - element of the European Earth 
Watch programme. 

GNSS Global Navigation Satellite System 

GOOS Global Ocean Observing System 

H2020   Horizon 2020 programme 

Hs  Significant Wave Height (see also SWH) 

H-SAF   EUMETSAT's Hydrology Satellite Applications Facility 

HDD   Hard disk 

IOC   Intergovernmental Oceanographic commission (of UNESCO) 

IODD   Input Output Data Definition 

IP   Implementation Plan 

IPCC   Intergovernmental Panel on Climate Change 

ISAS    In Situ Analysis System (LOPS) 

ISDB   in situ database (of Fiducial Reference Measurements and satellite 
measurements) 

JAXA   Japan Aerospace Exploration Agency 

JCOMM Joint Commission on Oceanography and Marine Meteorology 

KO   Kick-off 

MOOC   Massive Open Online Course 

NASA   National Aeronautics and Space Administration 
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NOAA   National Oceanic and Atmospheric Administration 

NOP   Numerical Ocean Prediction 

NWP   Numerical Weather Prediction 

Obs4MIPs  Observations for Model Intercomparison Projects 

ODP   Open Data Portal 

OOPC   Ocean Observation Panel for Climate 

OTT  Ocean Target Transform 

Pi-MEP  Pilot Mission Exploitation Platform 

PMP   Project Management Plan 

PSD   Product Specification Document 

PUG   Product User Guide 

PVASR   Product Validation and Algorithm Selection Report 

PVIR   Product Validation and Intercomparison Report 

PVP   Product Validation Plan 

QA4EO  Quality Assurance Framework for Earth Observation 

QSR   Quarterly Status Report 

R&D   Research and Development 

RTM  Radiative Transfer Model 

RCP   Representative Concentration Pathways 

RD   Reference Document 

SAF   Satellite Applications Facility 

SAR   Synthetic aperture Radar 

SISS   Satellite and In situ [Working Group] 

SLP   Sea Level Pressure 
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SMAP   Soil Moisture Active Passive [mission of NASA) 

SMOS   Soil Moisture and Ocean Salinity [satellite of ESA] 

SoW   Statement of Work 

SRAL   SAR Radar Altimeter (of Sentinel-3) 

SRD   System Requirements Document 

SSD   System Specification Document 

SSS   Sea Surface Salinity 

SST  Sea Surface Temperature 

SVR   System Verification Report 

SWIM   Surface Waves Investigation and Monitoring (instrument of CFOSAT) 

SWH   Significant Wave Height (see also Hs) 

TB  Brightness Temperature 

TBC  To Be Completed 

TOPC   Terrestrial Observation Panel for Climate 

TR   Technical Requirement 

UCR/CECR Uncertainty Characterisation Report (formerly known as the Comprehensive Error 
Characterisation Report) 

UNFCCC  United Nations Framework Convention on Climate Change 

URD   User Requirements Document 

USB   Universal Serial Bus 

USGS   United States Geological Survey 

VOS   Volunteer Observing ships 

WCRP   World Climate Research Programme 

WGClimate  Joint CEOS/CGMS Working Group on Climate 

WMO   World Meteorological Programme 
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WS  Wind Speed 

WWA   World Wave Atlas (of FUGRO) 
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2 Sensor main characteristics 

2.1 Introduction 

This section presents the main characteristics of SMOS, SMAP and Aquarius sensors. It provides 
information about revisit time and mean footprint resolution.  

2.2 SMOS 

The main SMOS characteristics are: 

✓ Interferometric radiometer with center frequency of 1.41 GHz and bandwidth of 27 MHz 

✓ Data time coverage: 2010-now 

✓ sub-cycle of 18 days 

✓ Exact repetitive cycle : 149 days 

✓ Earth Incidence Angle:  0-60°. 

✓ Local ascending/descending time: 6 AM/PM. 

✓ four polarizations 

✓ 3-dB (half power) footprint size: between 40 and 100 km (according to the incidence 
angle) 

✓ Global coverage : 3 days 

2.3 SMAP 

The main SMAP characteristics are: 

✓ Radiometer (6-meter mesh antenna) with center frequency of 1.41 GHz and bandwidth 
of 24 MHz 

✓ Exact repetitive cycle of 8 days 

✓ aft and fore acquisition 

✓ Data time coverage: 04/2015 to now 

✓ Conical scanning at 14.6 rpm. Scan time:  4.1 sec  

✓ Earth Incidence Angle:  40°. 

✓ Local ascending/descending time: 6 PM/AM. 

✓ four polarizations 

✓ 1000 km wide swath. 
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✓ 3-dB (half power) footprint size: 40 km. 

✓ Global coverage : 3 days 

2.4 Aquarius 

The main Aquarius characteristics are: 

✓ Radiometer (3 beams) with center frequency of 1.413 GHz and bandwidth of 25 MHz. 

✓ Exact repeat cycle of 8 days 

✓ Almost global coverage : 7 days 

✓ Data time coverage: 08/2011 to 06/2015. 

✓  Earth incidence angles: 28.7, 37.8, and 45.6°. 

✓ Footprints for the beams are: 74 km along track x 94 km cross track, 84x120 km and 
96x156 km yielding a total cross track of 390 km. 

✓ Measurement every 1.44s (about every 10 km). 

✓ Distance between beam swaths of about 100 and 150 km (across track).  

✓ Local ascending/descending time: 6 PM/AM. 

✓ TH, TV and third Stokes 

✓ Aligned with a scatterometer (1.26 GHz); both instruments polarimetric. 
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3 L1 uncertainty characterization 

3.1 Introduction 

In order to better understand the SSS uncertainties at L4, we need to have a global understanding 
on what happens at L0-L1 in terms of TB uncertainty budget. L0-L1 processing are very complex 
and require specific expertise. Indeed, it is not in our scope to review all L0-L1 processing 
methods for all satellite missions. Our purpose is to replay L2 from existing L1 products. It is 
therefore not our objective to re-estimate TB uncertainties but to take what comes out of the 
L0-L1 and work with them, as long as we have sufficient information to properly propagate TB 
uncertainties toward level 2. TBs at the L1 processing output have systematic uncertainties that 
are not corrected at L0-L1 and that we take into account in the higher levels in an empirical way.  

Hence, we develop methods for correcting systematic uncertainties and estimating random 
uncertainties at SSS level coming from remaining differences between forward model predictions 
and TB data from SMOS, Aquarius or SMAP are still found after instrumental calibration.  These 
differences may exhibit seasonal patterns varying from ascending to descending passes, due 
mainly to uncertainties in the thermal model/monitoring of the instrument, Radiative Transfer 
Model (RTM) inaccuracies, input auxiliary EO data , …etc. 

3.2 SMOS sensor 

SMOS is an L-band interferometer that measures the Fourier transform of the scene. Level 1 
processing is the passage of visibilities (which integrate antenna gains) to the Fourier transform 
of TB then the passage of TB in the frequency space domain to the physical space domain. These 
different processing require knowledge of antenna gains, with, as an additional difficulty, a 
spatial sampling of the observed frequencies lower than Shannon's sampling. Since the scene has 
infinite frequencies, this poses specific difficulties for the passage into physical space domain. In 
the following, this operation is called reconstruction 

Complex calibrations for thermal drifts based on Noise Injection Radiometer data and several on-
board thermistor measurements are used to calibrate the visibilities. Short-term calibration is 
regularly performed at raw level to compensate for high variability drifts. In addition, cold-sky 
calibration is performed at several occasions in a year when the satellite sensor is rotated upward 
sky during dedicated manoeuvres (used for the so-called Flat Target Transformation). Yet, 
systematic and seasonal image reconstruction uncertainties are still found in the reconstructed 
level 1 data despite raw data calibration. This can occur, for example, due to the instrument 
response to a very strong L-band source in the field of view, such as the sun image and its tails 
corrupting the quality of the reconstructed brightness but also because of image reconstruction 
systematic uncertainties (noise floor, aliasing, instrument impulse response function, antenna 
pattern uncertainties).  

To compensate for these distortions in the image, a vicarious calibration is performed at level 2 
by evaluating a mean spatial difference in the antenna coordinate frame between SMOS antenna 
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TBs and a radiative transfer forward model of the brightness obtained along specific orbits in the 
middle of the Pacific. The forward model is derived using climatology of SSS or analysed in situ 
data (ISAS fields) interpolated along the half orbits used for calibration. The Tb adjustment is 
named the Ocean Target Transformation (OTT).  

Following this correction, it is possible to empirically validate the uncertainties on TBs against the 
expected radiometric noise. These uncertainties are in accordance with the expected radiometric 
noise, as soon as the various unmodeled contributions have been filtered (RFI, sun effect, etc.). 
On the other hand, there are reconstruction biases that are not corrected by the OTT, which then 
generates biases in the estimated parameters. For the time being, L1 processing do not make it 
possible to avoid such biases. 

3.3 SMAP and Aquarius sensors 

To correct for residual drifts after raw data calibration, NASA algorithms thus use the median 
difference between Aquarius (or SMAP) data and forward radiative transfer model simulations 
of the brightness temperature obtained by using HYCOM model SSS or Argo SSS (depending on 
the release) as a forcing parameter. The difference is then averaged globally and the mean 
difference evaluated daily is used for post-calibration adjustments.  

For SMAP (it is more complicated than for Aquarius: the SMAP antenna has some non-negligible 
emissivity), the antenna temperature predicted from thermal model has some uncertainties, and 
a latitudinal correction has to be applied.  

In addition, uncertainties in the modelled side-lobes of the radiometer antenna patterns used for 
image reconstruction/antenna temperature  provide some signal leakage of the brighter sources 
(land, sea ice) into the lighter source (pure ocean). These so-called “land contamination” or “ice-
contamination” need to be corrected for the input TB to retrieve an unbiased SSS as close as 
possible from the coast lines or ice-edges.  A method of contrasting half-space is currently used 
in NASA algorithms to adjust antenna pattern corrections when Aquarius or SMAP pass through 
two sharply contrasted (in the TB sense) semi-infinite surface (from sea to land, for instance).  

 

3.4 RFI filtering 

SMOS, Aquarius and SMAP missions operate in the L-band protected spectrum (1400-1427 MHz) 
that is nevertheless now known to be vulnerable to radio-frequency interference (RFI). Areas 
affected by RFI might experience data loss or result in inaccurate soil moisture and ocean salinity 
retrieved values. To alleviate this situation, several strategies were put into place to filter the 
data from RFI perturbed measurements. As SMOS, launched in 2009, was the first satellite to 
operate in L-band, it does not have any on-board hardware/software to filter RFI, so that RFI 
filtering/mitigation only rely on data post-acquisition processing. This issue is significantly less 
important for SMAP (and to a least extent for Aquarius), as they are (were) equipped with on-
board frequency/time-domain-based RFI filters.   
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Over the ocean, SMOS data are contaminated by RFI emitted principally from land. The impact 
on the reconstructed brightness temperature can be positive or negative and is not limited to 
the location of the on-ground antenna causing the interference but affects measurements as 
soon as there is the line of sight between the instrument and the RFI source (Corbella, Martin-
Neira, Oliva, Torres, & Duffo, 2012). Due to the interferometer principle from a Y-shape antenna, 
the contamination is not circular symmetric in SMOS images, but presents six main tails spreading 
from the RFI source. In the case of SMAP and Aquarius, the RFI contamination is different as they 
operate real-aperture radiometer and on-board data filtering with enhanced detection 
capabilities. To protect against RFI, Aquarius employs rapid sampling (10 ms, milliseconds) and a 
“glitch” detection algorithm that looks for outliers among the samples. Samples identified as RFI 
are removed, and the remainder is averaged to produce an RFI-free signal for the salinity retrieval 
algorithm. The RFI detection algorithm appears to work well over the ocean with modest rates 
for false alarms (5%) and missed detection but RFI are still detected in Aquarius (Le Vine and De 
Matthaeis, 2014). SMAP takes a multidomain approach to RFI mitigation by utilizing an innovative 
onboard digital detector back end with digital signal processing algorithms to characterize the 
time, frequency, polarization, and statistical properties of the received signals. Almost 1000 times 
more measurements than what is conventionally necessary are collected to enable the ground 
processing algorithm to detect and remove interferences.  
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4 L2OS uncertainty characterization 

4.1 Introduction 

SSS random uncertainties are estimated from self-consistency analysis or by adjusting global 
metrics of differences between observed SSS with external data (ISAS, Argo). The random and 
systematic uncertainties can be obtained in a relative way by comparing averaged products from 
different sensors and orbit type (ascending or descending). 

L2 SSS random uncertainty is first derived for open ocean data. In a second step, their estimate 
is updated in case of land contamination. We extract from L2 data a multiplicative factor to be 
applied on the SSS random uncertainties. This factor allows taking into account secondary side 
lobe effects or reconstruction effects affecting TB measurements close to the coast.   

4.2 Methods 

4.2.1 Random uncertainty estimation 

4.2.1.1 Introduction 

In this section we present three different methods which allow estimating SSS random 
uncertainties: 

• by error propagation 

• by comparing measured SSS with a reference (affected by a neglectable error) 

• by self-consistency analysis 

4.2.1.2 Random uncertainty propagation 

The basic uncertainties on salinity correspond to that provided in salinity level 2 products.  

Level 2 algorithms are used to propagate the TB noise characterized by the radiometric accuracy, 
the uncertainty of all geophysical parameters (wind speed, surface temperature, etc.) on the 
salinity. The propagation methods generally assume a Gaussian statistic, a linearization of the 
forward model in the vicinity of the solution and least square type retrieval. The theoretical 
uncertainty such obtained depends on the a priori uncertainties on the parameters. In order to 
homogenize L2 uncertainties from the different sensors (SMOS, SMAP, Aquarius), a review of 
uncertainty propagation methods has been carried out. We then propose a strategy to 
standardize the uncertainty calculation and the a priori uncertainties to be assigned to the 
geophysical parameters. This strategy of standardizing the uncertainty calculation must be in 
phase with the standardization of the auxiliary data and the uniformization of the direct and 
inverse models on the set of sensors. Note that for the time being, model uncertainties (sun glint, 
roughness, atmospheric, galactic, dielectric models) are not propagated in L2 SSS. After that, 
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when computing L3 products by combining different L2 SSS, it is possible to use the L2 uncertainty 
in order to weight properly the SSS during the average.  

Basically, the theoretical SSS a posteriori uncertainty depends on the radiometric accuracy (𝜎𝑇𝐵) 
and the uncertainty on the auxiliary data. If these two uncertainty sources are given, the SSS 
uncertainty also depends mainly on the sensitivity of TB according to the SSS. This sensitivity 
increases with the SST. This means that the SSS uncertainty, 𝜎𝑆𝑆𝑆, increases at high latitudes. The 
relation is as follows: 

𝜎𝑆𝑆𝑆 = 𝜎𝑇𝐵. (
1

|
∂TB
∂SSS

(SST)|
) Eqn 4-1 

This yields, according to a 
∂TB

∂SSS
(SST) approximation for Stokes1 of -0.015. 𝑆𝑆𝑇 − 0.25 

𝜎𝑆𝑆𝑆 =
𝜎𝑇𝐵

0.015. 𝑆𝑆𝑇 + 0.25
 

SSS uncertainties due to WS uncertainties and SST uncertainties could be added quadratically to 
this relation after propagation.   

4.2.1.3 Random uncertainty from external data comparison 

The uncertainty balance obtained by uncertainty propagation does not generally include the 
uncertainties on the models themselves (model of galactic noise, roughness, solar 
contamination, etc.). In order to estimate the errors and to validate the uncertainties obtained 
by propagation, it is necessary to compare the satellite SSS data with external information (e.g. 
in-situ measurements). This can be done directly with SSS L2. It is however preferable to average 
the L2 data before comparison in order to reduce the noise level and to have an estimation of 
the systematic uncertainty. Hence the comparison with the external data is carried out on L2 and 
L3 products. This approach has been performed sensor by sensor (L2) . 

4.2.1.4 Random uncertainty from self-consistency analysis 

The 3 sensors provide independent measurements. Three comparisons are made, depending on 
the period: SMOS-Aquarius over the period 2012-2015, SMOS-SMAP over the period 2015-2020 
and SMOS-SMAP-Aquarius over the period April to June 2015. Note that if we standardize the 
direct and auxiliary data, the random and systematic uncertainties on the SSS data will not be 
completely independent. On the other hand, this could make possible to qualify uncertainties 
related to the unexpected behaviour of the instruments (drift, problem of reconstruction, 
contamination by RFI, etc). 
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Finally, it is possible to compare SSS by triple collocation by adding the in-situ data products. The 
difficulty of this inter-comparison lies in the fact that the spatial resolution of SSS in situ and 
satellite are not identical (representativity uncertainty to be taken into account) and that the 
satellite salinities are affected by correlated uncertainties (due to the use of common auxiliary 
data). However, it is possible to estimate a minimum uncertainty level on the sensors. 

4.2.1.5 Qualitative estimation of random uncertainty and identification of outliers 

In some cases, we know that the estimation of the random uncertainties at L2 is inaccurate 
(especially if one identifies problems of convergence in retrieval algorithms). In this case, it is 
important to identify the outlier SSS and flag it accordingly. In addition, some statistical indicators 
for TB residues may show that the uncertainty obtained by propagation is underestimated. It is 
then possible to empirically re-evaluate the SSS random uncertainties upwards.  

4.2.2 Systematic uncertainty estimation 

4.2.2.1 Introduction 

Estimating systematic uncertainties is much more difficult than estimating random uncertainties. 
In fact, in most Level 2 products, the systematic uncertainty is not directly estimated. There are 
two types of systematic uncertainties: relative systematic differences (inter-sensor or intra-
sensor) and absolute systematic uncertainties (in comparison with ’truth’). The systematic 
uncertainties should be corrected with identical techniques for the 3 sensors, this being an 
essential prelude before combining the data of the various sensors.  

4.2.2.2 Estimation of relative systematic differences 

The solution to this problem is not to estimate absolute SSS, but rather to analyse salinity 
anomalies. This approach has been applied to SMOS and has yielded very good results (Boutin et 
al, 2016). In particular, specific algorithms allow correcting the relative across track  systematic 
uncertainties (Kolodziejczyk et al. 2016) and ascending-descending latitudinal biases (Boutin et 
al. 2018). This type of algorithm will be extended to the other sensors and it will thus be possible 
to estimate the relative biases for all the sensors. 

Moreover, the bias also depends on the operating point and the sensitivity of TB to SSS. Some 
biases related to TB bias can be corrected a posteriori, for example in relation to SST. 

In order to characterize the bias, we can distinguish 2 types of bias: 

- a land-sea contamination bias independent of time which is related to the instrument function 
(reconstruction problem for SMOS and pollution by the existence of side lobes for SMAP and 
Aquarius). Even though the land emissivity is expected to vary seasonally, it is so large compared 
to ocean emissivity (~a factor 2) that at first order it can be considered as constant. 
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- a seasonal latitudinal bias that depends on sun and galactic noise contamination and possibly 
on other instrumental drifts that are considered here periodic over a period of one year.  In 
CCI+SSS v3, this correction is applied only on SMOS data, but it could be applied on other sensors 
in future versions.  

We consider that latitudinal bias is independent of the basin (Atlantic, Pacific or Indian Ocean) 
and that it applies in addition to coastal bias in an additive way.  

The general formulation of the bias, for a given grid node at the position (lat,lon) is as follows: 

SSSobs(X, t, orb, lat, lon) = SSS(t) − bc(X, orb, lat, lon) − bl(X, orb, t_month, lat) Eqn 4-2 

with bc, coastal bias and bl latitudinal bias. SSS_obs is the observed salinity, SSS(t) corresponds 
to the unbiased SSS.  X corresponds to a subset of data that is assigned in the same way through 
the bias. In the case of Aquarius, this may be the considered antenna beam or, in the case of 
SMOS, the position of the measurement in the swath, in the case of SMAP the aft and fore views. 
As already mentioned, bl is not considered for Aquarius and SMAP in CCI+SSS v3.  

It is possible to calculate bc and bl independently starting with the calculation of bl on open sea 
areas taken far from the coast. Then, a latitudinal correction is applied to the coastal pixels. From 
these latitudinal bias corrected data, we can estimate bc. Since the number of independent 
subsets of data is relatively large, the different biases can be estimated in a self-referenced way, 
i.e. there is no need for an external reference when considering anomalies and not absolute 
salinities. Note that the Eqn 4-2 requires a simultaneous estimation of SSS(t) (or anomalies with 
respect to a reference salinity given by the measurements themselves) and biases bc and bl since 
we do not use an external reference that gives us SSS(t). This is a very important point because, 
in this situation, we estimate the L4 products, represented by SSS(t) at the same time as we 
characterize the biases. The uncertainty propagation occurs at the time of this estimate. In view 
of this remark, an estimation method should be proposed. We have chosen to perform a 
Bayesian least square method that includes a time correlation length. We can process each grid 
node independently of each other and thus maintain the native spatial resolution of the sensors.  

The resolution of this equation will follow the method described in the paper by Kolodziejczyk et 
al. 2016 which presents an application on SMOS.  

An improvement of this correction has been proposed, in particular as regards the inclusion of 
SST. This approach remains valid for all L-band sensors.  

The correction of the inter-dwell or latitudinal instrument bias does not depend in principle on 
geophysical conditions. However, if the brightness temperature bias (∆TB) is generally 
independent of geophysical conditions and especially of the sea surface temperature (SST), this 
is not the case for the SSS bias (∆SSS) ([RD09]). Indeed, the sensitivity of the retrieval (transition 
from brightness temperatures to SSS) depends strongly on SST. The sensitivity of TB to SSS 
decreases with a decrease in SST. Therefore, a given ∆TB bias will not have the same impact on 
SSS at low or high temperatures. More precisely, we have: 
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∆SSS = ∆TB. (
1

∂TB
∂SSS

(SST)
) 

The lower the sensitivity 
∂TB

∂SSS
(SST), the greater the bias on the SSS, for a constant TB bias. This 

behaviour obviously does not simplify the management of bias correction in SSS since, at a given 
point, SST can vary greatly from one season to another. 

If we measure an SSS bias at SST=SST0, it is like measuring a different SSS bias at SST=SST1: 

∆SSS(SST = SST1) = ∆SSS(SST = SST0) (
0.015 SST0 + 0.25

0.015 SST1 + 0.25
) 

≡ ∆SSS(SST = SST0). coeffSST0(SST1) 

coeffSST0(SST1) represents the multiplicative coefficient to be applied to the calculation of the 
bias when it is observed at a different SST. So the idea is to compute the bias for a given SST, that 
is, to reduce, for each measure, to an average SST that does not necessarily correspond to the 
SST observed at the time of the acquisition.  

4.2.2.3 Estimation of absolute systematic differences. 

The estimation of SSS(t) from Eqn 4-2 is affected by a global bias and the SSS(t) estimate contains 
essentially the SSS anomalies. The relative correction described in the previous section does not 
allow reaching absolute SSS field. 

The absolute systematic uncertainty calculation requires correction based on climatology or in-
situ data. At SSS level, the resolution of Eqn 4-2 gives L4 SSS anomalies. At this level, it is possible 
to add at these SSS anomalies a constant shift in order to reach an absolute SSS.  

4.3 Spatial sampling 

The definition of the grids on which the SSS are projected can be done at several levels: 

1/ from user considerations who wish to work on regular rectangular grids in (lat,lon), 
oversampled.  

2/ from pragmatic considerations related to information content. In this case, it is a question of 
working on a grid that allows to switch to any other grid with a minimum loss of information. 
Given the resolution of the sensors, it is a question of sampling at a frequency twice as high as 
the resolution. The average resolutions of SMOS, SMAP and Aquarius are respectively ~50 km, 
40 km and 150 km. A 0.25° longitudinal sampling should then allow interpolation on any grid. The 
EASE grid is an area conservative grid (Figure 1), regular in degrees of longitude but not in latitude 
with an average sample length of 25 km [Brodzik et al., 2012]. The level 2 SSS is resampled on 
this grid before analysis 
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Figure 1: EASE grid (under sampling of a factor of 10). 

4.4 Uncertainty estimation methods applied to SMOS, SMAP and Aquarius. 

4.4.1 Introduction 

We use L2 and L3 products to characterize the uncertainty on the SSS estimator and get a first 
idea of the bias behaviour for each sensor.  

4.4.2 PI-MEP (from https://www.smos-pimep.org/overview.html) 

The Soil Moisture and Ocean Salinity (SMOS) mission was launched on 2nd November 2009 as 
the second Earth Explorer Opportunity mission within ESA's Living Planet programme. It has been 
continuously providing brightness temperature data in L-Band since January 2010, which are 
used to retrieve Soil Moisture (SM) and Sea Surface Salinity (SSS) data over land and ocean, 
respectively. This project funded by ESA aims at setting up a Pilot Mission Exploitation Platform 
(Pi-MEP), focussing on ESA's SMOS mission and supporting enhanced validation and scientific 
process studies over ocean. 

Pi-MEP project objectives: 

• Focus 1 - Enhanced validation of satellite SSS and products assessment 
• Focus 2 - Oceanographic exploitation and case-studies monitoring 
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The Pi-MEP is designed to allow systematic comparisons between available datasets by 
providing comparable QC metrics for all these SMOS data derived SSS products, as well as for 
the two other NASA missions. This will enable: 

1. the user to choose which satellite SSS product is best adapted for their own specific 
application, 

2. to improve the Level 2 to Level 4 SSS retrieval algorithms by better systematically 
identifying the conditions for which a given SMOS, or other satellite, SSS products are of 
good or degraded quality. 

3. to in fine converge towards best approaches and generate less but better satellite SSS 
products. 

A large ensemble of in situ SSS data distributed by different data centers can be used to infer 
SMOS, Aquarius or SMAP SSS data product quality. This includes in situ data from the following 
sources: 

• ARGO float data (CORIOLIS) 

• Moored buoy data (TAO, PIRATTA, RAMA, STRATUS, NTAS, SPURS1-2, WHOTS) 

• Thermo-Salinograph data installed on Voluntary Observing Ships (LEGOS, SAMOS) 

• Thermo-Salinograph data installed on Research Vessels (GOSUD, Polarstern, NCEI-
0170743) 

• Thermo-Salinograph data installed on Sailing Ships (GOSUD) 

• Surface Drifters (LOCEAN) 

• Equipped marine mammals (MEOP) 

• Analysed in situ data fields (IFREMER/LOPS) 

• Dedicated Campaign data (e.g. SPURS) 

So the PI-MEP is very useful in order to estimate the quality of the L2OS and L3OS products.  

4.4.3 External data 

In order to compare the SSS of the different sensors with external data, we will use the ISAS data 
and the different comparisons made at PI-MEP.  It should be noted that ISAS data are very 
spatially smoothed (600 km) which can lead to interpretation difficulties when comparing better 
spatially defined satellite fields over areas where spatial variability is high. In this case, the 
representativity uncertainties are significant in the comparison mechanism. This representativity 
uncertainty could be calculated on the basis of high spatial resolution models. 

4.4.4 Data analysis 

4.4.4.1 Introduction 

Data analysis is essentially carried out on the basis of self-consistency of SSS. 
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A first understanding of the L2 SSS uncertainties comes from the ATBDs and validation reports of 
each sensor.  

Random uncertainties must be well known in order to be able to properly weight the different 
SSSs when developing L3 and L4 products. We propose to validate the theoretical uncertainties 
provided in the products or to empirically estimate the uncertainties that affect the SSS estimator 
(in the case of SMAP L2C products and Aquarius L3 products, such uncertainties are not 
provided). We know that the theoretical uncertainty (which assumes that the direct model and 
instrumental response are known) depends essentially on radiometric measurement errors and 
the sensitivity of TBs to SSS. This sensitivity depends essentially on the sea surface temperature 
SST. We will therefore attempt to characterize the theoretical uncertainty according to SST. 

With regard to systematic uncertainties, there are several causes that generate them: 

-the instrument, which is known with a certain level of precision, undergoes poorly controlled 
and therefore poorly corrected solicitations (antenna temperature, antenna gains, etc.).  

-the direct model used for inversion is not perfect (dielectric constant, sun, galactic, TEC...) 

In all cases, systematic uncertainties result from limited knowledge of the signal and sensor.  

Currently, the various sensors have their own correction strategies for brightness temperatures.  

However, as we will show, there are residual biases in salinity. Here, we are trying to build a 
salinity field from salinities from the different sensors. The aim is to mix SSS as homogeneous as 
possible and thus to correct inter-sensor bias.  

Two possibilities for addressing these residual biases: 

-to improve knowledge of the signal and sensors and to act on brightness temperatures and 
direct models. 

-to compute empirically the bias and to correct it afterwards. 

These biases affect the data differently depending on the across-swath position and the orbit 
type (ascending or descending). More precisely, we know that glint effects depend on the season 
and the geometry of observation. There are a solar glint and a galactic glint which can, depending 
on geometry and latitude, have a greater or lesser impact on the signal. Similarly, the flux 
affecting the antenna back lobes depends on the orientation of the antennas and the position of 
the different sources and their intensity (for instance, even if the back lobe gains are very low, a 
source like the sun can affect significantly the total signal).  

We consider that a constant bias affects the following subsets of measurements: 
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- for SMOS, the same bias is considered for all SSS coming from the same dwell line and the same 
position (lat,lon). The dwell lines are sampled across track every 25 km. The bias has two 
components : a time-independent component and a latitudinal seasonal component.  

- for SMAP, the bias is considered independently for fore and aft measurements and for each 
(lat,lon) position.  

SSS from ascending and descending orbits are also differentiated for both sensors. 

- for Aquarius, we will use the L3 data, ascending and descending orbits separately.    

Therefore, we have several datasets from the different sensors and it is necessary to solve the 
Eqn 4-2 in order to estimate the biases bc and bl for SMOS As underlined in section 4.2.2.2, the 
estimation of the biases is done simultaneously with the SSS optimal interpolation.  

4.4.4.2 SMOS L2OS data 

The SMOS data comes from a specific L2OS CCI processing. This processing used L1 v6 data (gibbs 
1 processing) as input. The OTT are computed by using ISAS and the a priori information on the 
auxiliary parameters comes from ERA5. The forward models are those implemented in the L2OS 
v662 processor, except for the dielectric constant model which is new and has been derived from 
SMOS data by Boutin et al. (2020).  The data are corrected from instantaneous rain rate lower 
than 10mm/h by using A. Supply relationship (2020). For higher rain rate value, the data are 
discarded.   

4.4.4.2.1 Estimation of random uncertainty by propagation in the L2OS processor 

A maximum-likelihood Bayesian approach is used in the L2 inversion algorithm, taking advantage 
of the a priori information available about geophysical parameters (SSS, SST, wind speed, TEC, 
etc.), hereafter denoted 𝑃𝑖. With this formalism, errors on TB and on the retrieved geophysical 
parameters are assumed to be Gaussian. The following cost function 𝜒² is minimized: 

𝜒² = ∑
[𝐴𝑚𝑒𝑎𝑠 𝑖 − 𝐴𝑚𝑜𝑑𝑒𝑙 𝑖]²

𝜎𝐴𝑖
2

𝑁

𝑖=1

+ ∑
[𝑃 𝑗0 − 𝑃 𝑗]²

𝜎𝑃𝑗0
2

𝑀

𝑖=1

 

This means that the uncertainty on the a priori 𝑃 𝑗0 (WS, SST …) parameters are propagated on 

the SSS estimator.  

The theoretical a posteriori variance (uncertainty) 𝜎𝑃𝑖

2  can be computed by the Levenberg-

Marquardt algorithm as follows (Zine et al., 2008): 

[

𝜎𝑃1

⋯
𝜎𝑃𝑀

] = √𝑑𝑖𝑎𝑔(𝐌−1) 
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where M is the pseudo-Hessian, with 𝐌 = 𝐅𝐓𝐂𝐨
−𝟏𝐅, where 𝐂𝐨 is the a priori covariance matrix 

and 𝐅 the matrix of derivatives: 

𝑑𝑖𝑎𝑔(𝐂𝐨) =

[
 
 
 
 
 
𝜎𝐴1

2

…
𝜎𝐴𝑁

2

𝜎𝑃10
2

⋯
𝜎𝑃𝑀0

2 ]
 
 
 
 
 

 

The two components of this a priori covariance matrix 𝐂𝐨 are: 

• 𝜎𝐴𝑛
2 = 𝜎𝐴𝑚𝑒𝑎𝑠_𝑛

2 + 𝜎𝐴𝑚𝑜𝑑𝑒𝑙_𝑛

2  which includes 𝜎𝐴𝑚𝑒𝑎𝑠_𝑛

2 , the estimated instrument brightness 

temperature uncertainty, and 𝜎𝐴𝑚𝑜𝑑𝑒𝑙_𝑛

2  the estimated forward model uncertainty. Both 

are considered in the antenna reference frame. The radiometric uncertainty 𝜎𝐴𝑚𝑒𝑎𝑠_𝑛

2  is 

already given in the antenna reference frame. The model uncertainty 𝜎𝐴𝑚𝑜𝑑𝑒𝑙_𝑛

2  is given in 

the ground reference frame and propagated to antenna frame before the retrieval (using 
the ground to antenna rotation matrix, see Appendix B of Zine et al., 2008). 

• 𝜎𝑃𝑀𝑖
2 , the  a priori variance of the geophysical parameter 𝑃𝑀𝑖 

Providing the L2OS users with an improved uncertainty σ is key for a number of application, such 
as proper L2 SSS merging at Level3 and 4 (σ can be used to properly weight multiple L2 SSS 
observations in a specific space-time window), or for assimilation into Ocean General Circulation 
models, etc.  

Typically, 𝜎𝐴𝑚𝑒𝑎𝑠_𝑛

2 ranges from 1.5 to 3.5 K depending on the distance to the sub satellite point. 

Radiometric accuracy is computed based in two main parameters: integration time of the 
snapshot and footprint size, or the equivalent area introduced into the computation of the 
measurement in the Fourier space. This means that it depends on incident angle and, therefore, 
there is a cross-track dependency/variation, but also there is dwell line dependency. In a first 
approach, we took the model uncertainty 𝜎𝐴𝑚𝑜𝑑𝑒𝑙_𝑛

2  to be constant and equal to 0.5 K for H and V 

polarization and 0.1 K for Stokes-3 and Stokes-4. In addition, in the current version of the 
processor (v662), the geophysical parameter a priori uncertainties are constant as function of 
time and space and given as follows: 𝜎𝑆𝑆𝑆 = 100 psu;  𝜎𝑆𝑆𝑇 = 1°C; 𝜎𝑊𝑆 = 2 m/s and 𝜎𝑇𝐸𝐶 =10 
TECu. 

A first improvement has been done by multiplying SSS a posteriori uncertainty by 𝜒, which is the 
normalised square root of the cost function  𝜒² after convergence.  

4.4.4.2.2 Estimation of random uncertainty by using empirical approach 

In order to estimate the actual uncertainties empirically, we consider, for each grid node, time 
series of 40 days of data taken at different times of the year. The SMOS revisit time being about 
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4 days, we have about ten SSS over this period. Assuming that the SSS does not change over this 
period (which is true most of the time), the std of the time series gives an idea of the uncertainty. 
However, the uncertainty depends on the position of the measurement according to the center 
of the swath. In order to normalize the data, we create a reduced dimensionless centered 
variable X (normalizing by the theoretical uncertainty a posteriori 𝜎𝑆𝑆𝑆 multiplied by the 𝜒): 

X=((SSS-<SSS>)/𝜎𝑆𝑆𝑆̃ )  with 𝜎𝑆𝑆�̃�=𝜎𝑆𝑆𝑆 x 𝜒 

This new random variable should follow a Gaussian distribution of mean 0 and standard deviation 
1 if the theoretical uncertainty is realistic. If the theoretical uncertainty is underestimated, the 
std of this new variable is greater than 1. In this way it is possible to homogenize SSS affected by 
different theoretical uncertainties. 

The histograms of the reduced centred variable are presented in Figure 2, and we note that the 
distributions are very close to a Gaussian of zero mean and standard deviation 1. The relatively 
high values of the standard deviation (1.8 and 1.25) are mainly related to distribution tails and 
the sensitivity of the std to outliers. We can see that for the open sea, the theoretical uncertainty 
weighted by the 𝜒 gives results very close to the error. For the coast, there are still high 
uncorrected contaminations. They are dominant in the vicinity of the Asian coast where RFIs are 
very strong and not temporally stable. In some regions, the high value of the std is due to the 
dynamics of the SSS over 40 days (rainy areas such as ITCZ, river plumes). In this case, the stability 
assumption of the SSS is not ensured. 

 

 

Figure 2: histogram of the new random variable X (reduced centered SSS) after applying a coastal correction. Top: pixels near the 
coast (dcoast<400 km); bottom: pixels in the open ocean. March 2012. 

So, to conclude, the SMOS theoretical uncertainty multiplied by the adjustment 𝜒 in some cases, 
is underestimated, especially on the Asian coast and places heavily contaminated by RFIs. This 
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indicates the presence of outliers. The algorithm of Boutin et al. 2018 allows us to get rid of some 
of these outliers by adding a 3 sigma filter from data intercomparison.  

Close to the coast, a specific CCI processing is implemented by multiplying the theoretical 
uncertainty by a factor depending on the distance to the coast f(dist) (see Figure 3). 

 

Figure 3: uncertainty factor according to the distance to the coast.  

4.4.4.2.3 Estimation of systematic uncertainty 

N. Kolodziejczyk et al. 2016 showed that SSS biases affecting SMOS data are dependent on 
position on FOV and (lat,lon) so we computed an SSS bias dependence on dwell-line and position 
(lat,lon), see Figure 6 and Figure 7. 

Also, a bias depending on latitude and season was quantified (Boutin et al. 2018). We are 
therefore in the situation of Eqn 4-2 with 2 biases to manage (latitudinal and inter dwell biases). 

SMOS data is affected by latitudinal and coastal systematic uncertainties (biases).  

The latitudinal bias was estimated under the following conditions: 

• Period [2013-2019]. 

• Pseudo-dielectric constant (Acard) filtering (|Acard smos – Acard mod| <3). This filtering allows 
removing part of the ice and RFI contaminations.  

• Filtering of SSS with large random uncertainty (L2 SSS random uncertainty < 5) 

• Filtering of SSS which pertains to outside reasonable interval (SSS > 42 or SSS< 5) 

• Distance to the coast > 600km. Exclusion of some oceans. The selected area for latitudinal 
computation is given Figure 4. 

• Smoothing of the correction with a 5° latitude window width (instead of 10° in version 1) 
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• Reference SSS from ISAS: isas15allinsitu + ISAS 6.2 NRT (instead of ISAS 6.2 NRT in version 1) 

• Selection of ISAS SSS explaining a significant amount of variance (with PCTVAR < 80%)  

 

An example of bias estimation is given Figure 5. 

 

Figure 4: Mask applied to SMOS data for latitudinal bias computation.  

 

 

Figure 5: example of latitudinal correction for the month of January. The x axis corresponds to the ascending dwell lines and the 
descending dwell lines, the y axis corresponds to the latitude. Such a diagram is available for each month of the year (12-month 

periodicity).  
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Figure 6: example of SMOS bias (relative +absolute) calculated for xswath=363 km. Top: ascending orbits; bottom, descending 
orbits. 

 

Figure 7: example of SMOS bias (relative +absolute) calculated for xswath=13km. Top: ascending orbits; bottom, descending 
orbits. 
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4.4.4.2.4 flagging the data 

We chose to apply the SSS filtering before merging and correcting for relative and absolute 
biases, so that to remove most of the pixels with SSS outside reasonable oceanographic range, 
contaminated by ice or by RFI, or contaminated by high wind speed: 

- SSS associated to wind speed larger than 16 m/s has been removed.  

- SSS associated to pseudo-dielectric constant (Acard) is kept only if |Acard smos – Acard mod|<2 
and Acard>42. This filtering allows removing part of the ice and of the RFI contamination.  

- SSS is kept if SSS > 2 & SSS<45   

- SSS is removed if chi > 3 or SSS random uncertainty > 3 .  

- SSS is removed if the acquisition occurs too far from the track : abs(xswath)>400km.  

- SSS is kept if fg_outlier = 0 (fg_outlier  is raised at L2OS if the number of TB outlier data are 
lower than a given threshold).  

4.4.4.3 SMAP L2 data 

We used SMAP L2C v4.0 products (SMAP_RemSSS_Release_V4.0), SSS at 40 km resolution. 

4.4.4.3.1 Estimation of random uncertainty 

An empirical estimation is performed for SSS L2 uncertainty estimate (see [AD 06]) by using self-
consistency approach. For SMAP, it is possible to compare SSS coming from aft and for acquisition 
and to compute the std of the difference which should be an estimator of the SSS random 
uncertainty multiplied by sqrt(2) (assuming that the random uncertainty according to SST is the 
same for aft and for acquisition). This yields the relationship of the SSS uncertainty according to 
the SST shown Figure 8. This empirical uncertainty is used during the SMOS-SMAP-Aquarius 
merging in order to weight the SMAP SSS. This uncertainty is derived far from coast in order to 
avoid land and RFI contamination effect.   

As for SMOS, a specific processing is implemented by multiplying the previous empirical 
uncertainty (obtained far from coast) by a factor depending on the distance to the coast f(dist) 
(Figure 9). This factor has been obtained by comparing the open ocean uncertainty with an 
estimation of the error according to the coast distance. Indeed, coast contaminations are 
expected due to secondary lobe and RFI.  
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Figure 8: SSS SMAP uncertainty obtained by comparing aft and fore acquisitions.   

 

Figure 9: uncertainty factor according to the distance to the coast. SMAP. 

 

4.4.4.3.2 Estimation of systematic uncertainty 

CCI latitudinal correction is not performed on SMAP SSS because such a correction is already 
done in the v4.0 products.  

Inter calibration corrections are computed by distinguishing aft and fore acquisitions for 
ascending and descending orbits separately. The corrections to be applied are shown Figure 10 
and Figure 11.  
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Figure 10: SMAP bias (relative +absolute) calculated for aft acquisitions. Top: ascending orbits; bottom, descending orbits. 

 

Figure 11: SMAP bias (relative +absolute) calculated for fore acquisitions. Top: ascending orbits; bottom, descending orbits. 
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4.4.4.3.3 flagging the data 

We used an analogous filtering as the one used by RSS team (RD10):  

• The sun glint angle is less than 50° and the azimuthal look angle lies between 30° and 50° (bit 
5 in L2 Q/C flag is set).  

• The moon glint angle is less than 15° (bit 6 in L2 Q/C flag is set).  

• The v/h-pol average of the reflected galactic radiation exceeds 2.0 K (bit 7 in L2 Q/C flag is 
set).  

• The TB consistency, which is defined as the √𝜒2 of the MLE in the salinity retrieval algorithm, 
exceeds 1.0 K (bit 10 in L2 Q/C flag is set).  

• The gain weighted land fraction exceeds 0.01. 

• The gain weighted sea ice fraction exceeds 0.001.  

• WS<16m/s 

• SSS removal if associated to an instantaneous rain rate larger than 0.5 mm/h (no correction 
applied as for SMOS).  

4.4.4.4 Aquarius L3 data 

The following dataset is used: RSS L3 v5, ascending and descending separated products. 

4.4.4.4.1 Estimation of random uncertainty 

The random uncertainties can be calculated by comparing the SSS at time t with the SSS at time 
t+7days due to the 7-day periodicity of the satellite orbit. It is assumed that SSS on the open 
ocean does not change significantly in 7 days. The standard deviation of the difference then gives 
a fairly precise idea of the random uncertainties (multiplied by sqrt (2)).  Figure 12 shows the 
standard deviation as a function of SST obtained far from coast. 

As for SMOS and SMAP, a specific processing is implemented by multiplying the previous 
empirical uncertainty (obtained far from coast) by a factor depending on the distance to the coast 
f(dist) (Figure 13). This factor has been obtained by comparing the open ocean uncertainty with 
an estimation of the error according to the coast distance. Indeed, coast contaminations are 
expected due to secondary lobe and RFI. 
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Figure 12: SSS Aquarius uncertainty obtained by comparing 7 day acquisitions.   

 

Figure 13: uncertainty factor according to the distance to the coast. Aquarius. 

 

4.4.4.4.2 Estimation of systematic uncertainty 

Given that there is already a correction implemented in the Aquarius processing, no extra 
correction is added with regard to the latitudinal component of the bias. Nevertheless, the 
difference (SSS Aquarius - SSS ISAS) is used to verify the latitudinal bias. We observe residual 
biases at high and intermediate latitudes but with relatively small amplitudes compared to those 
observed with SMOS (Figure 14). 
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Figure 14:  Hovmöller diagram of Aquarius latitudinal biases (SSS Aquarius - SSS SMAP). Top: ascending orbits. Bottom: 
descending orbits.  

Inter calibration corrections are computed by distinguishing ascending and descending orbits 
separately. The corrections to be applied are shown Figure 15.  

 

Figure 15: Aquarius bias (relative +absolute). Top: ascending orbits; bottom, descending orbits. 

4.4.4.4.3 flagging the data 

Aquarius L3 products are already filtered.  No extra-filtering is applied before merging.  
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5 L3 and L4 uncertainty budget 

Main CCI products are L4 SSS products estimated at a weekly and a monthly resolution (with a 
daily and 15days sampling respectively). In these products, uncertainty estimation is performed 
by using classical least square uncertainty budget. The L2 SSS input random uncertainties are the 
one presented in the first part of this document for SMOS, SMAP and Aquarius sensors. The 
relative systematic uncertainties are estimated simultaneously with the monthly SSS L4 
estimation. Concerning the SMOS latitudinal systematic uncertainty, it is corrected before the L4 
merging. The detailed algorithms are presented in the ATBD v3.  

The use of L3 data allows comparing global maps provided for different month and for different 
orbit types. The project provides specific L3 data, with corrected and uncorrected SSS. These data 
are used by the validation team which have in charge the product assessment.  
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6 Conclusions and way forward 

 

Phase 1 CCI+ SSS project is dedicated to SMOS-SMAP-AQUARIUS synergy. The merging of 
different products from different sensors (radiometer for SMAP and AQUARIUS, interferometer 
for SMOS) shall take into account as input a realistic random and systematic uncertainty model.  

The self-consistency between satellite SSS measured by the various sensors and under various 
geometries have been used for correcting and/or estimating systematic and random 
uncertainties.  

In CCI+SSS phase 1, latitudinal systematic uncertainties have been estimated only for SMOS, 
assuming that corrections done in other processings will avoid such systematic uncertainties. 
However this is not the case; in particular systematic seasonal latitudinal uncertainties are 
observed on Aquarius that could be taken into account following a similar way as the one 
described here for SMOS. 

The characterization of SSS variability remains challenging as, on one hand, the combination of 
in-situ and satellite information remains to be improved (Stammer et al., 2021); and on the other 
hand, regions with high SSS variability such as the river plumes or strong surface currents regions 
are the ones benefiting the most from the satellite information (Tranchant et al., 2019). The 
statistical distribution of SSS is not expected to be Gaussian (Bingham et al., 2002), especially in 
regions affected by fresh water inputs, so that vertical, temporal and spatial representativeness 
uncertainties between in-situ and satellite measurements are not expected to be Gaussian. In 
particular, the SSS distributions are expected to be skewed towards low SSS values while the 
higher part of the SSS distributions are expected to vary much less. This lead us to adopt an 
adjustment of the full time series of CCI L4 SSS and ISAS SSS in fresh and very variable regions 
based on a high quantile of their statistical distributions. Nevertheless, OI assumption of Gaussian 
errors might lead to some drawbacks in fresh regions such as river plumes or rainy areas, e.g., an 
artificial increase (decrease) of the uncertainty during periods with decreased (increased) 
variability that are very difficult to quantify given the sparseness of existing in-situ 
measurements. For the reasons outlined above, the estimate and validation of the SSS 
uncertainty is very tricky and require extended research to go beyond the relatively crude 
approach presented here. 

 

However, because SSS measurements are contaminated by RFI, a special care has to be done 
concerning the detection and the RFI removal. So far, we consider the RFI effect as constant in 
time. But we know that in some cases, RFI present intermittent signature. This means that the 
systematic uncertainty is not constant in time as we assumed during this phase.  

Some uncertainties have not been corrected and could be taken into account during phase 2: 
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-latitudinal biases for Aquarius and SMAP.  

-regional correction by adding a bias correction according to large scale by using climatology or 
Argo SSS interpolated fields. 

-specific uncertainty characterization in Arctic and Antarctic where the ice contamination varies 
according to the season. 
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