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1 Introduction 

The Product Validation and Algorithm Selection Report (PVASR) reports the results of algorithm round-

robin intercomparison as the basis for algorithm selection and further development during the Lakes_cci 

project. The PVASR is an internal document. 

The purpose of the PVASR is to keep track of algorithm validation and the protocols used to carry out 

algorithm selection, particularly where these deviate from the Product Validation Plan (PVP).  

The following elements for algorithm validation and selection are taken into consideration for each of the 

Lakes Essential Climate Variable products:   

- How round-robin comparison was performed, including the satellite EO, ancillary and validation 

data sets employed.  

- Specification of selection criteria to rank the results, and discussion of whether and how the 

selection criteria can be combined to provide an overall ranking. 

- Specification of the included algorithms.  

- Details of any harmonisation of the algorithms performed in advance to ensure unbiased results 

(e.g. common ancillary data sets). 

- Results of the performance assessment of each individual algorithm. 

- Ranking of the algorithms according to the results of the assessment. Different rankings may 

need to be derived corresponding to the different selection criteria or sets of associated selection 

criteria. 

- Reasoning and justification of the overall ranking, including a discussion of user priorities 

considered when making any trade-offs in ranking. 

The following sections detail these procedures for each respective Lakes ECV variable.  
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2 Lake Water level – LWL 

 

2.1 Candidate algorithms  

The algorithm for LWL calculation was developed at LEGOS and is detailed in the Algorithm Theoretical 

Basis Document (ATBD). It is based on the state-of-the-art in calculating LWL from satellite altimetry. Since 

each altimeter provides a distinct Global Data Record, an initial phase of organising the data and the 

geophysical corrections is required to produce a coherent climate data record. Moreover, each satellite 

mission presents a specific altimeter bias which requires correcting (based on published results), in order 

to arrive at a consistent long-term multi-satellite LWL time series.  

The software used in this process was previously developed and is named Hysope. It can be used 

operationally and is based on Intermediate Geophysical Data Records (IGDRs) (delivery delay 1 to 2 days). 

It is operated at CLS in the framework of the Hydroweb database. A version for non-operational use also 

runs at LEGOS and is based on the same equations but using Geophysical Data Records (GDRs) instead 

of IGDRs (Crétaux et al. 2016). 

The procedure is run against data within a priori defined polygons of lake contours (using the common 

dataset of maximum water extent outlines created for Lakes_cci) which are then processed using the 

Hysope software which is classically using the following equation:  

LWL= Alt – Rcorr - TE           [2.1] 

Where LWL is considered with respect to a geoid, Rcorr is the measured range between the satellite and 

the lake surface, Alt is the altitude of the satellite above an ellipsoid and TE is the combination of all 

correction factors to take into account atmospheric refraction (propagation in the ionosphere and the 

troposphere), tidal effects (solid Earth, lake and polar), and geoid height above the ellipsoid. For more 

detailed information a full discussion of the computation of LWL is found in Crétaux et al. (2009).  

All corrections are released in the Geophysical Data Records (GDRs) (delivery delay = 90 days)  or the 

IGDRs. The range is chosen from different retracking considering that generally the OCOG retracking is 

the most suitable for continental surface (see E3UB v2.1.1 document). The geoid correction is calculated 

using the repeat track technique (see E3UB v2.1.1 and Crétaux et al. 2009, 2016). 

 

2.2 Validation results  

The general algorithm used to calculate water level over lakes is well known and established in scientific 

literature. To address the issues that are listed in the following sections, we need to analyse lakes where 

reference in-situ data is available. Examples of these procedures are given in Ricko et al. (2012) and 

Arsen et al. (2015), comparing different databases which include lake water level observations.  

Lakes_cci cooperates with the State Hydrological Institute of St Petersburg, which provides in-situ data 

of LWL for a set of Russian and central Asian lakes. We also use existing databases on the web to increase 

the number of lakes that can be used for this purpose. These external sources are indicated in Table 1. 

Table 1. in-situ datasets used in the validation of the LWL product 

Source Description 

U.S. Army Corps of Engineer3   The U.S. Army Corps of Engineer provides in-situ data on Great Lakes.  All levels 

are referenced to the International Great Lakes Datum of 1985 (IGLD 85). 

Water levels have been coordinated with Canada for 1918-2018.  

https://www.usace.army.mil/
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Source Description 

Hidricos Argentina4  The database base of Hidricos Argentina provides in-situ data on national rivers 

and lakes.   

U.S. Geological Survey5   The USGS investigates the occurrence, quantity, quality, distribution, and 

movement of surface and underground waters, and disseminates the data to 

the public. It provides in-situ data on U.S. lakes.  

Water Office of Canada6  The Water Office of Canada provides historical water level collected over 

thousands of hydrometric stations across Canada.  

FOEN7  The Swiss Federal Office for the Environment provides hydrological data, and in 

particular the water levels of lakes in Switzerland.  

ANA8  The Brasilian “Agencia Nacional de Aguas e Saneamiento Basico” (ANA) 

provides in-situ data on reservoirs in Brazil.  

 

The comparative analysis allows the statistically best performing retracking algorithm to be selected, as 

has been widely demonstrated for lakes as well as rivers.  

Additional metrics to validate the LWL products include comparison of individual LWL retrieval to the long-

term LWL variability, to detect outliers. The impact of removing outliers is traced as part of this process. 

 

2.3 Identified issues 

There are two main issues currently under investigation for processing of altimetry data over lakes. The 

first is related to the onboard tracking system, and the second is related to the processing of altimetry 

over small lakes.  

We have identified solutions to address onboard tracking issues based on new a priori information. For 

retrieval of LWL over small lakes we identify solutions based in new algorithms for SAR data. Both 

approaches are detailed in the Algorithm Development Plan.  

Another separate consideration of retrieval performance is the calculation of relative biases when several 

satellites of different types of orbits are used over a given lake. When we use a series of satellites such 

as Topex / Poseidon, Jason-1/2/3, we collect data from the same orbit, so that the relative bias between 

each mission is well described and calibrated (see Cretaux et al. 2009, 2011, 2013, 2018, Bonnefond 

et al., 2018). When observations from different orbit are used, however, such as with Jason and Envisat 

or Jason and Sentinel-3, another bias is added. The instrumental biases are known, but since the tracks 

do not cover the same position over the lake, an additional bias due to geoid error has to be considered. 

A very simple method has been developed at LEGOS to correct for this additional bias. The LWL is 

calculated independently using each track, over the whole period of time, and during the overlapping 

period we interpolate the point measurement from each pass and calculate the average difference 

between all interpolate points. It then corresponds to the additional bias due to geoid errors. 

The observed limitations are not negligible and need further improvements over the next two years. The 

most notable expected improvement is a dedicated DEM uploaded to current ESA altimetric missions, to 

improve the radar tracking over small lakes particularly in regions with surrounding relief, like mountain 

areas. New processing of past missions, mainly using data generated as part of the FDR4ALT project 

contained in the TDP- IW (Thematic Data Product - Inland Waters), will also be carried out in order to 

provide longer and more accurate time series for small lakes. Finally, we are implementing new methods 

for SAR processing on sentinel-3A and sentinel-3B satellite known as full SAR processing, which will allow 

sub meter resolutions along the track of the satellite.  

 

http://bdhi.hidricosargentina.gob.ar/
https://waterdata.usgs.gov/nwis
https://wateroffice.ec.gc.ca/
https://www.bafu.admin.ch/bafu/en/home.html
https://www.gov.br/ana/en
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3 Lake water extent -LWE  

 

3.1 Candidate algorithms  

As detailed in the Algorithm Theoretical Basis Document, based on results obtained in previous work an 

approach based only on optical HR imagery was adopted for LWE. Water surfaces are extracted from the 

images based on the exploitation of an in-house processing chain, named ExtractEO (Maxant et al, 2022).  

 

3.2 Validation results  

Validation of the LWE product already starts during several preprocessing and processing steps. The 

validation is done individually over each lake for the following steps: 

· Data selection process 

· Hypsometric curves computation 

· Water extraction  

3.2.1 Date selection for candidate images based on altimetric data. 

The aim of this step is to select set of pertinent images acquired at representative stages of a given lake, 

i.e., lower, higher and intermediate level of water/filling of the lake. For this, an analysis of a LWL from 

Hydroweb is done, based on quantile, a buffer is applied to enlarge the epochs. 

In the example of Bagré reservoir (Burkina Faso), 56 dates were identified to characterize lake water level 

stages. Applying a temporal window to each date, the image search then extended to 336 individual days. 

From these dates, 110 Sentinel-2 MSI were found and investigated. After running ExctractEO  to calculate 

cloud cover percentage, 32 images were kept with < 5 % cloud cover over the lake. The 

representativeness of the resulting set of images was then checked to ensure that the full range of water 

levels was still included (Figure 1). A hypsometric relationship is then computed based on LWL from 

Hydroweb and LWE derived from the Sentinel-2 MSI imagery.  

 

 

Figure 1: Date selection based on Hydroweb altimetric time series. The selected dates well cover all the stages of 
the lake filling, from Min to Max plus intermediate levels 
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3.2.2 Analysis of the hypsometric curves  

The obtained hypsometric curve and repartition of the LWE/LWE pairs are analysed to observe the 

tendencies of the curves and identify possible anomalies, to remove outliers and to understand sources 

of potential omission or commission during the processing of the data (Figure 2).    

 

 

Figure 2: First estimate of the hypsometric relationship based on 32 images of Bagré Reservoir. 

In this first hypsometric curve estimate, based on 32 LWL/LWE pairs, a few points are marked as outliers. 

It can further be noted that the curve does not integrate the highest values LWE/LWL. The resulting RMSE 

is relatively high at 32.31 km2 (i.e., 13% of the largest observed lake surface). 

 

Figure 3: Analysis of problematic LWE/LWL pairs, usually related to haze, smoke or cloud. 

Based on visual analysis (Figure 3), four pairs were rejected where clouds, haze and sun glint are 

observable.  

A new hypsometric relationship is then calculated (Figure 4), where the curve extends over the full 

observed range and RMSE reduced from 32.3 km2 (i.e. 13%) to 3.4 km2 (1.4 %).    
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Figure 4: Final hypsometric curve for Bagré reservoir based on 28 pairs passing quality checks. 

 

3.2.3 Water extraction process validation  

Lake by lake water extents’ validation is not suitable when applied to many lakes, however, it is possible, 

necessary and important to validate the procedure which generates lakes’ area and lakes’ vectors from 

Sentinel-2 MSI and Landsat images.  

To validate the ExtractEO processing chain, cross-validation of coincident high resolution (HR) and very 

high resolution (VHR) optical measurements of water extent were carried out over selected lakes 

representing different lake environments and morphological complexity.  

The result of this validation is a pixel-wise accuracy estimate, as well as overall aggregated accuracy 

estimates. Thus, by combining pairs of HR and VHR observations we can make an overall comparison of 

how good the process to generate water extent from HR optical imagery. The VHR data are either Pleiades 

HR or Pleiades NEO data with spatial resolution of 70 and 30 cm, respectively. This dataset (Table 2) was 

obtained thanks to CNES facilities within the SWOT Cal/Val program and through Pleaides NEO 

promotional use in the Dinamis programme. Results of the investigation are detailed for each of the 

regions in the following sections. 

Table 2: Pairs of VHR and HR data available for the validation of the processing chain 

Site  Province Country  Size in km2  VHR dataset  Dates of 

acquisition VHR  

Dates of 

acquisition HR 

Fitri lake  Chad 200-1250 Pleiades HR:  0,7m 2021   

Fern Ridge Reservoir Oregon 

USA 

36  Pleiades HR: 0,7m 

  

SPOT 6-7: 1,5 m 

25072022 

29072022 

11082022 

26072022 

29072022 

13082022 

Lac de Der  Champagne 

France 

10-40 Pleiades HR: 0,70m 30122019 

06012020 

 31122019 

06012020 

Lac d’Orient  Champagne 

France 

8-23  Pleiades NEO: 0,30m 15122022 13122022 

16122022 

Lac d’Auzon-Temple Champagne 

France 

7-20 Pleiades NEO: 0,30m 15122022 13122022 

16122022 

Lac d Amance Champagne 

France 

0-18 Pleiades NEO: 0,30m 15122022 13122022 

16122022 
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Shenjing lake 

  

Anhui Prov. PR 

China 

33 Pleiades NEO: 0,30m 10122021 07122021 

 

Lakes in Champagne  

In this area, several lakes are linked to the flood protection system of Paris by the Grands lacs de Seine 
establishment (Figure 5). They were covered by the recently launched Pleiades NEO sensors as well by 
Pleaides imagery.  

 

Figure 5: Lakes in Champagne 

Pleiades NEO was acquired on 15 December 2022 whereas Sentinel-2 MSI data were acquired on 13 

and 16 December 2022. Due to presence of snow, the comparison was carried out for the VHR/HR pair 

of 15 and 13 December 2022. This winter period corresponds to low water level, when open water is 

surrounded by sandy-muddy banks. This offers a good opportunity to illustrate the classical effects related 

to the different spatial resolution, with a sawtooth/staircase limit on Sentinel2 LWE compared to the 

straighter limits of VHR shown in Temple Lake (Figure 6). This comparison also highlights the apparent 

commission related to the exploitation of the SWIR band from Sentinel-2, shown in detail for Orient Lake 

(Figure 7). At this low water level, SWIR bands are not so effective at differentiating water from the 

surrounding environment, and do not separate wet sandy-muddy banks from open water. 
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Figure 6: Effect of resolution in Temple Lake. The red line marks LWE from Pleiades NEO (30cm); the yellow line shows 
the saw tooth limits derived from Sentinel-2 MSI. 

 

 

Figure 7: Comparison of VHR/HR in Orient Lake. Left: Pleaides NEO. Right: Sentinel-2. Red lines are the LWE limits 
derived from Pleaides NEO, yellow lines the Sentinel LWE limits. 

Table 3: Metrics obtained over the Champagne lakes 

    

 

The metrics obtained on these reservoirs show very high values both for the classic precision and 

accuracy rates and for the more interesting parameters such as the F_Score and Recall. This reflects the 

very good recognition and extraction of water bodies using Sentinel2 data via ExtractEO, qualifying the 

proposed approach for generating LWEs (Table3). 

Fern Ridge reservoir (Oregon, USA) 

Fern Ridge Reservoir (or Fern Ridge Lake) is a reservoir on the Long Tom River in Oregon (USA). The 

reservoir is a U.S. Army Corps of Engineers flood control project encompassing near 49 km2 and a popular 

site for boating, fishing, and birdwatching. Surrounding portions of the reservoir is the Fern Ridge Wildlife 

Area, a wildlife management area providing a unique habitat for a variety of species including wintering 

waterfowl populations. 

By comparing the LWE extracted from the VHR and HR images, Sentinel-2 detected more water in the 

eastern part of the reservoir (Figure 8)..These pixels, corresponding to wet areas of mixed waterlogged 

vegetation located in the Ridge Fire zone, were extracted and recognised as water areas from the 

Senitnel2 data. This confusion between open water and wetland stems from the use of the Sentinel2 

SWIR bands, spectral bands which are highly discriminating for open water, but which make it difficult to 

differentiate these wetlands from waterlogged areas, just as in other cases from sand or mud banks. In 

the case of the Fern Ridge site, this relative commission represents around 4% of the water surface.  

This case also illustrates the problem of the definition of a lake, what are the limits of a water body of the 

zones of open water only or zones of open water plus the surrounding flooded wetlands ?.    
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Figure 8: Fern Ridge reservoir observed with Pleiades HR (25-07-2022), Sentinel-2 SWIR false colour composite (26-07-
2022). A comparison of LWE derived from Pleiades in yellow and Sentinel-2 in blue is shown to the right. 

 

In terms of metrics, despite this relative omission related to wetlands, correspondence was good in terms 
of accuracy and F Score (Table 4). 

 

Table 4: Metrics obtained over Fern Ridge reservoir for the VHR/HR pairs of the Pleiades and Sentinel-2 on 26/07/2022 
and 25/07/2022 (left), and for Pleaides and Sentinel-2 acquired on 29/07/2022 (right). 

 Pleaides on 526/07/2022,  

S-2  on 25/07/2022 

 Pleaides and S-2 on 629/07/2022 

Type Frequency Sum Area Percent  Frequency Sum Area Percent 

Reference 91 27242769.9 100  102 27205236.4 100 

Database 42 28411100. 104.29  51 28188500. 103.61 

Omission 84 347057.1 1.27  94 350991.15 1.29 

Commission 42 1515387.2 5.53  50 1334254.74 4.73 

Detection rate 31 26895712.8 98.73  36 26854245.2 98.71 

Accuracy rate 1 999999.0 

 

94.67  1 999999.0 

1.0 

95.27 

Break 1 1.0 1  1 1.0 1 

Precision 1 1.0 0.95  1 1.0 0.95 

Recall 1 1.0 0.99  1 1.0 0.99 

F_score 1 1.0 0.97  1 1.0 0.97 

CSI 1 1.0 0.94  1 1.0 0.94 

 

Fitri Lake (Chad) 

Fitri Lake (12°50'N, 17°30'E), is the largest lake inside Chad. It plays a major role in this Sahel region 

for human activities and as a refuge for biodiversity. It occupies an endoreic watershed with a surface 

area of 80,000 km2 located in the middle of the Sahel to the east of Lake Chad.  Fitri Lake’s dynamic is 

directly linked to the West African monsoon regime, whose seasonal to multi-annual variability directly 

impacts variations in its level and its extent.  As a result, Lake Fitri is a sensitive and unique record of 

monsoon variability and its impact on landscapes and ecosystems in the past.  

Lake Fitri is an endoreic lake occupying a basin with a very shallow topography. The depth of the lake is 

less than 2.5 m (low-water period). From 1995 onwards, based on Landsat data, a gradual resurgence of 

the lake and its wetland was observed. Observations in recent years (2017-2022) confirm the trend 

towards increased extension of the lake during the rainy season. These analyses were carried out using 

Sentinel-2 satellite images with a resolution of 10 m (Maxant et al., 2023). They clearly highlight the 
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surplus hydrological years of 2020 and 2022, with water surfaces of 1249 and 1180 km2 respectively, 

compared with the 194 km2 observed in 2017. 

Over Fitri Lake (Chad), two approaches of processing Sentinel-2 MSI were compared, one based on 10 m 
spatial resolution and the other at 20 m of spatial resolution.  

Visual analysis highlighted the gain related to the highest spatial resolution of Pleaides. This is particularly 

well documented on the fringes of the main water body but also on smaller flooded branches of the lake 

(Figure 9 and Figure 10). 

 

Figure 9: Fitri lake illustration of gain in water surface when exploiting VHR Pleiades imagery (yellow) compared 
with the Water mask derived from Sentinel-2 (orange). 

 

 

Figure 10:Comparison of LWE derived from Pleaides image and Sentinel 2 with UL, Pleiades colour composite of a 
flood branch of the Fitri lake, upper right, LWE derived from Pleaides, Bottom left, LWE derived from a Sentinel2 

image at 20 m of spatial resolution and bottom right, LWE from A Sentinel2 processed at 10m. 

When analysing the obtained LWE metrics (Table 7), values are very similar between the two image 
resolutions, with slightly higher omission at 20 m and slightly more commission at 10 m.  At both Sentinel-
2 resampled resolutions, the recall and precision are relatively good for this complex hydro- system. Of 
course, part of the omission is related to the difference in spatial resolution between the VHR and HR 
images. 
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Table 7: Metrics obtained from the comparison of LWE derived from Pleiades and Sentinel 2 MSI at 20 m (left), and 10 
m (right). 

 S-2 20m versus Pleiades 

 

 S-2 10m versus Pleiades  

Type Frequency Sum Area Percent  Frequency Sum Area Percent 

Reference 63797 370516696.8 

 

100  63797 370516696.8 100 

Database 7629 353542800 94.42  8193 361739810.3 97.6 

Omission 62591 48843863.9 13.18  94 46444991.5 12.53 

Commission 7459 31869966.8 9.01  50 37668104.8 10.41 

Detection rate 7353 321672833.1 86.82  36 32417105.3 87.46 

Accuracy rate 1 999999.0 90.99  1 999999.0 89.59 

Break 1 1.0 1  1 1.0 1 

Precision 1 1.0 0.91  1 1.0 0.90 

Recall 1 1.0 0.87  1 1.0 0.87 

F_score 1 1.0 0.89  1 1.0 0.86 

CSI 1 1.0 0.80  1 1.0 0.79 

 

Shenjin Lake  

Shengjin Lake, located on the south bank of the middle and lower reaches of the Yangtse River (Anhui 

province, PR China) is a large shallow freshwater lake with a shoreline extending to 156 km at 11 m 

above sea level. Dominated by lakes and freshwater marshes and boasting good water quality, it is one 

of the best-preserved inland freshwater lake systems along these stretches of the Yangtze River. The site 

plays a role in regulating floods along the Yangtze and contributes to water purification and regional 

climate regulation. It also provides an important stopover and wintering ground for migrating birds.  

The case of the Shenjin Lake illustrates the difficulties to extract water extent in case of shallow waters, 

when the delimitation of water and wet sediments can be very delicate. This is particularly sensitive during 

the step of sampling selection process.  

For Sentinel-2, two sets of parameters were tested (Table 8), to reduce the weight of the SWIR channels 

that can induce commission over wetland and mud/sandy banks such as previously shown. 

Table 8: Parameters exploited for sampling selection 

 Param 1 Param 2 

MNDWI Threshold 0.45 0.1 

NDWI Threshold [0.1, 0.4] [0.01,0.3] 

Number of samples 10000 10000 

Pekel Threshold 20 20 

Refining method SWIC SWIC 

SWIC Threshold [0.3, 0.9] 0 

 

When analysing the LWE limits derived from Pleaides NEO and the two LWE results from Sentinel-2, the 

limits of the Pleaides NEO and Sentinel-2 with parametrization 1 are generally very similar, whereas the 

LWE obtained with the second set parameterization introduce a buffer zone along the water limits, 

including very light sandy areas (Figure 11). 
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Figure 11. Comparison of the LWE limits derived from Pleiades NEO and Sentinel2 

When analysing the LWE metrics (Table 9), results obtained from parameter set 2 present high values for 

commission and relative low accuracy values. The commission rate decreases with the first 

parametrization while omission increases. These omissions are mostly related to very fine water paths 

observed at 0.30 cm and not at 10 m resolution. Over this complex shallow water system, the different 

scores are relatively good with recall or F Score values about 0.85-0.87. 

Table 9: Metrics obtained from the comparison of the LWE derived from Pleaides Neo and two parametrizations of the 
sampling step for water recognition from Sentinel-2.  

 Parametrization 1 Parametrization 2 

Type Frequency Sum Area Percent Frequency Sum Area Percent 

Reference 513 32691145.8 100 513 32691145.8 100 

Database 41 33698468.7 103.8 102 46942058 143.59 

Omission 442 4099507.1 12.54 333 1155269.43 5.53 

Commission 30 5106830 15.15 100 15406181.6 32.82 

Detection 

rate 

36 28591638.7 87.46 69 31535876.3 96.47 

Accuracy rate 1 999999.0 

 

84.85 1 999999.0 67.18 

Break 1 1.0 1 1 1.0 1 

Precision 1 1.0 0.85 1 1.0 0.67 

Recall 1 1.0 0.87 1 1.0 0.96 

F_score 1 1.0 0.86 1 1.0 0.79 

CSI 1 1.0 0.75 1 1.0 0.66 
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3.3 Identified issues  

In terms of algorithm few issues have been identified:   

• The presence of sun glint on water surfaces can disrupt the process of recognising and extracting 

water bodies. The appearance of this phenomenon depends not only on the position of the sun, 

but also on the location of the target in the swath. It would be beneficial to develop a sunglint flag 

to avoid issues with sunglint propagating through to final results. This would also allow automatic 

adjustment of related coefficients and thresholds in the ExtractEO processing chain. 

• Refinement to the existing cloud detector in the ExtractEO chain should lead to better cloud 

detection in the S-2 L2A product.  

 

3.4 References 

Maxant J, Braun R, Caspard M, Clandillon S. (2022). ExtractEO, a Pipeline for Disaster Extent Mapping 

in the Context of Emergency Management. Remote Sensing. .14(20):5253. 

https://doi.org/10.3390/rs14205253 
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4 Lake surface water temperature – LSWT 

 

4.1 Candidate algorithms  

Surface temperatures from infrared observations are obtained by coefficient-based methods or optimal 

estimation (OE, Merchant and Embury 2014). Because of the varied altitudes of lakes and the large 

differences in atmospheric absorption associated with continentality, optimal estimation is the 

appropriate approach for LSWT estimation (MacCallum and Merchant, 2012).  

OE also provides comprehensive equations for uncertainty evaluation, on which basis uncertainty 

estimates are provided in LSWT products per datum.  

As well as retrieval, classification of which pixels are filled with water under clear skies is a necessary part 

of the LSWT processing. This is done by a “fuzzy logic” style approach in which a number of metrics with 

fuzzy thresholds are combined into a “water detection score” that contributes to the definition of the 

quality level attributed to the pixel. Bayesian cloud detection, as used for sea surface temperature, was 

also considered to identify clear-sky pixels but is heavily compromised in its current implementation for 

small lakes, where the spatial coherence of the temperature of the scene is not a good indicator of cloud 

(unlike in the centre of large lakes and over open ocean). Because of the user requirement to increase 

the number of measured lakes, the latter scheme is therefore currently inapplicable for the identification 

of clear-sky only water pixels. 

 

4.2 Validation results  

Validation results (for LSWT 4.5 for the CCI Lake v2) are summarised in the product validation report. The 

validation undertaken is a comparison of satellite to matched in-situ temperatures. These comparisons 

are limited by the non-representative sample-of-opportunity (in-situ measurements being unfortunately 

hard to obtain) and by variable and often unknown in-situ uncertainty characteristics and quality control. 

Validation results are too ambivalent in this case to be used as a discriminant between alternative 

algorithmic approaches, and for LSWT are not used in this way. As mentioned in the previous section, the 

retrieval algorithm is established by considerations rooted in physics and inverse theory.  

Nonetheless, the validation exercise is sufficient to establish that for quality level (QL) 5 (best quality) 

LSWT data, the data have low bias (<0.1K) and uncertainty estimates are reasonable.  

 

4.3 Identified issues  

LSWT retrieval 

1. Optimal estimation uses an observation-simulation error covariance matrix. This matrix is 

presently a simple diagonal estimate that doesn’t account for the likelihood of cross-channel 

correlations in the simulation errors.  

2. Optimal estimation uses a prior error covariance matrix. This matrix is a simple diagonal estimate 

based on experience of ERA-interim, and ideally should be updated for use with ERA-5.  

LSWT retrieval uncertainty 

(NB, this aspect is also addressed by the issues identified for LSWT retrieval.) 
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1. The decomposition of the optimal estimation uncertainty into different correlation length scales 

is an approximation; a more complete solution needs to be coded. (The decomposition is relevant 

when creating gridded data.) 

Water detection 

1. The water detection to select water-only pixels relies on day-time (reflectance) channels, and 

therefore cannot be applied at night. The alternative that may work at night is based on Bayesian 

cloud screening (as used in SST CCI), and for small lakes require considerable research, 

development and modification which will be explored for the CCI LAKES v3 dataset.  

Quality level determination 

1. QL determination is based mainly on water detection results, on the sensitivity to the prior, on 

retrieval chi-square results (which measure the plausibility of the solution given the prior and 

observations). However, the chi-square results differed more than expected between Metop-A and 

Metop-B AVHRRs, affecting the QL attribution adversely in the case of Metop-B. This is yet to be 

clearly understood, but the root of the reasons very likely lies in the L1b data. 

Increasing coverage processing night-time 

1. By far the most impactful issue for users for LSWT is to increase the density of coverage, which is 

limited by sensor-orbit coverage and by cloud cover. Moreover, night-time observations are 

considered to provide better accuracy than daytime data when compared with bulk temperatures 

due to, among other things, the absence of solar heating (Hook et al., 2003).  Therefore, in v5.0 

an attempt to generate night-time LSWT will be undertaken by the team.  

2. Without guaranteeing success, Bayesian cloud detection (adapted from SST CCI) will be applied 

on night-time observations, based on developing a new climatology of LSWT from the CDR v2.1. 

If validation of the night-time results justifies their inclusion in v3.0, this will approximately double 

the observation frequency for some lakes (not necessarily all). 

A work-around for the Metop-B issue with chi-square is implemented in LSWT v4.1 and LSWT v4.5, but a 

more fundamental resolution will be sought. 

 

4.4 References 

Merchant, C.J., Embury, O., Roberts-Jones, J., Fiedler, E., Bulgin, C. E., Corlett, G. K., Good, S., McLaren, 

A., Rayner, N., Morak-Bozzo, S. and Donlon, C. (2014) Sea surface temperature datasets for climate 

applications from Phase 1 of the European Space Agency Climate Change Initiative (SST CCI). 

Geoscience Data Journal, 1 (2). pp. 179-191.  

MacCallum, S.N. and Merchant, C.J. (2012) Surface water temperature observations of large lakes by 

optimal estimation. Canadian Journal of Remote Sensing, 38 (1). pp. 25-45.  

Hook, S. J., Prata, F. J., Alley, R. E., Abtahi, A., Richards, R. C., Schladow, S. G., Palmarsson, S. (2003). 

Retrieval of lake bulk and skin temperatures using Along-Track Scanning Radiometer (ATSR-2) data: A 

case study using Lake Tahoe, California. Journal of Atmospheric and Oceanic Technology, 20(4), 534–

548.  
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5 Lake water leaving reflectance – LWLR 

 

5.1 Candidate algorithms  

The algorithm validation procedures and results associated with CRDP v2.1 are unchanged with respect 

to CRDP v2.0.2. New algorithm validation work is planned for CRDP v3.0, as described in the Algorithm 

Development Plan. New chlorophyll-a candidate algorithms for OLCI are already described here.  

Algorithms in the LWLR processing chain Calimnos  fall into three categories:  

● Pre-processing including pixel identification as water, land, cloud or ice  

● Atmospheric correction yielding LWLR  

● Derived water-column concentration estimates, notably of chlorophyll-a and turbidity  

 

For the pre-processing category the processor relies on the Idepix multi-sensor processor in SNAP. The 

algorithm combines information from static sources (such as water extent) and dynamic pixel 

identification based on a neural network trained for each of the optical sensors. Depending on the 

capabilities of the sensor, the processing chain will rely on combinations of these processes. The 

algorithm is not part of validation of the Lakes_cci LWLR but its performance is taken into 

consideration with regard to consistency in water/land masking between the Lakes_cci thematic ECVs.  

Validation of algorithms for atmospheric correction requires near-coincident in-situ observations of water-

leaving reflectance. Due to scarce in-situ data from lakes, the window for ‘coincidence’ may be up to 

several days from satellite observation. Longer time windows allow more data points to be included, which 

is suitable to determine the best-performing algorithm but less suitable to determine product 

uncertainties which may then be exaggerated. The majority of radiometric in-situ data for lakes is 

deposited in LIMNADES, the largest and only community-owned repository for lake bio-optical 

measurements, correspond to the MERIS observation period. Recently, the GLORIA database (Lehmann 

et al. 2023) was published which provides an additional radiometric reference source, albeit with a large 

degree of overlap with LIMNADES. GLORIA is gradually being introduced in algorithm validation. Finally, 

several automated radiometry systems are currently in operation through a range of research projects, 

although not within a formal network. These include the WISPstation observations using instrumentation 

by Water Insight, and So-Rad shipborne observations with automation developed at PML. The procedure 

for selecting and evaluation of candidate algorithms is presently as follows:  

● Round-robin evaluation of MERIS atmospheric correction algorithms  

● Application of the most suitable MERIS algorithm(s) to MERIS and OLCI  

● Evaluation of algorithms for MODIS based on minimizing inter-sensor bias during overlap with MERIS 

and OLCI, respectively  

 

A strategy for including SeaWiFS observations will be defined based on the results of MODIS (and VIIRS), 

although this is not within the scope of currently planned outputs.  

 

Finally, algorithms for the derived water-column properties, notably chlorophyll-a and turbidity (either 

directly or by conversion of total suspended matter concentration, usually following Nechad et al. 2016), 

are evaluated in a sensor-dependent manner similar to the procedure given for atmospheric correction 

algorithms. These algorithms are first evaluated against the available in-situ data archives to assess their 

application range. The algorithms are then tuned for optimal performance as a function of their 

membership to a set of optical water types, allowing them to be mapped to satellite imagery using a 

weighted averaging ‘blending’ method. Details on the optical water type methodology are provided in 

the Algorithm Theoretical Basis Document.  
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Several of the algorithms that may be considered for atmospheric correction are coupled atmosphere-

water models yielding water-column properties including chlorophyll-a and suspended matter 

concentrations. These algorithms have not all been thoroughly evaluated in peer-reviewed literature and 

are included primarily for reference. Where they outperform better-understood alternatives they will be 

given further consideration.  

The candidate algorithms are listed per sensor In the following tables. As a rule of thumb, only algorithms 

with a transparent and published methodology are considered, and algorithms with a theoretical basis 

suggesting specificity and sensitivity to the target substance are preferred. Where algorithms have been 

previously validated in a specific region, their validated range is given. The MERIS/OLCI algorithms tested 

for CRDP v1.0 (Table 10 and Table 11) are described in comparative detail in Neil et al. (2019).  

For the MODIS/VIIRS set of candidate algorithms (Table 12 for chlorophyll-a, Table 13 and Table 14 for 

suspended matter and turbidity) this comparison was carried out for the first time in the Lakes_cci and 

used from CRDP v2.0. Details on the waveband combinations that are shown in these tables suggest 

there may be substantial overlap, in which case highly similar algorithms are ultimately collapsed into 

algorithm types prior to calibration.  

Finally, Table 15 and Table 16 list candidate chlorophyll-a and TSM/Turbidity algorithms for OLCI (and in 

many cases, MERIS) which will be evaluated for CRDP v3.0. This analysis is not yet reported here.  

Table 10: Candidate algorithms tested for MERIS (and OLCI by proxy) yielding chlorophyll-a concentration 

Type Model Reference 

(Semi-)empirical  

NIR-red BR 

MERIS 2-Band 708/665 Gilerson et al. 2010 

Gurlin et al. 2011 

Gons et al. 2005 

MERIS 2-Band 753/665 Gilerson et al. 2010 

Gitelson et al. 2011 

Moses et al. 2009.  

MERIS 3-Band  Gitelson et al. 2008 

Gitelson et al. 2011 

Gurlin et al. 2011 

Moses et al. 2009  

MERIS NDCI  Mishra et al. 2012 

Empirical OC MERIS OC2E 

MERIS OC3E 

MERIS OC4E  

O’Reilly et al. 2000  

Neural Network NN_Chl 

NN_IOP 

FUB 

CoastColour 

C2RLakes(EUT/BOR) 

Ioannou et al. 2013 

 

Analytical MERIS QAA [Turbid] Mishra et al. 2013 

MERIS GSM Maritorena et al. 2002 

MERIS Matrix Inversion Boss and Roesler 2006 
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Type Model Reference 

Peak Height Method MPH Matthews et al. 2012 

Table 11: Candidate algorithms tested for MERIS (and OLCI by proxy) yielding total suspended matter.  

Type Algorithm name Reference 

Empirical Binding red 

Zhang 708 

Vantrepotte 665 

POWERS 560 

Binding et al. 2005 

Zhang et al. 2010 

Vantrepotte et al. 2011 

Eleveld et al. 2008 

D’Sa 665/560 

Dekker 490, 560 

Dekker 560, 665 

D’Sa et al. 2007 

Dekker et al. 2002 

Loisel 3-Band Loisel et al. 2014 

(Semi-) Analytical Binding A 

Nechad 665 

Nechad 681 

Nechad 708 

Nechad 753 

Binding et al. 2010 

Nechad et al. 2010 

Table 12: Summary of candidate Chla algorithms tested for MODIS/VIIRS 

Code Name/form Type Bands* Calibration or validated 

range 

Reference 

A OC3M blue-green band 

ratio 

min[Rrs(443), 

Rrs(488)], 

Rrs(547) 

0. 2 ~ 90 mg m-3 O’Reilly and 

Maritorena 2000 

B OC2M blue-green band 

ratio 

Rrs(488), Rrs(547) 0. 2 ~ 90 mg m-3 O’Reilly and 

Maritorena 2000 

C OC2M-HI (500 

m) 

blue-green band 

ratio 

Rrs(469), Rrs(555) 0. 2 ~ 90 mg m-3 O’Reilly and 

Maritorena 2000 

D FLH peak height Rrs(665), 

Rrs(677), Rrs(746) 

1 ~ 10 mg m-3 Letelier 1996 

E linear NIR-red band 

ratio 

Rrs(748), 

[Rrs(667) or 

Rrs(678)] 

4 ~ 240 mg m-3 Gitelson 1992; 

Dall’Olmo et al. 

2005; Gitelson et al. 

2007, 2008; Gurlin 

et al. 2011 

F linear blue-green band 

ratio 

Rrs(551), Rrs(443) 8 ~ 17 mg m-3 Ha et al. 2013 

G linear spectral index Rrc(645), Rrc(859) 6. 6 ~ 113. 7 mg m-3 Shi et al. 2017 

H APPEL model empirical R(645), R(859), 

R(469) 

2. 5 ~ 91. 0 mg m-3 El-Alem et al. 2012 

I GSM semi-analytical (not reproduced) 0 ~ 100 mg m-3 Maritorena et al. 

2002 

https://paperpile.com/c/UkYWw3/fpLQ
https://paperpile.com/c/UkYWw3/fpLQ
https://paperpile.com/c/UkYWw3/fpLQ
https://paperpile.com/c/UkYWw3/fpLQ
https://paperpile.com/c/UkYWw3/fpLQ
https://paperpile.com/c/UkYWw3/fpLQ
https://paperpile.com/c/UkYWw3/JtSq
https://paperpile.com/c/UkYWw3/i5An+PSyj+jcUV+U5pA+jmP7
https://paperpile.com/c/UkYWw3/i5An+PSyj+jcUV+U5pA+jmP7
https://paperpile.com/c/UkYWw3/i5An+PSyj+jcUV+U5pA+jmP7
https://paperpile.com/c/UkYWw3/i5An+PSyj+jcUV+U5pA+jmP7
https://paperpile.com/c/UkYWw3/i5An+PSyj+jcUV+U5pA+jmP7
https://paperpile.com/c/UkYWw3/mQty
https://paperpile.com/c/UkYWw3/e8C5
https://paperpile.com/c/UkYWw3/stln
https://paperpile.com/c/UkYWw3/dJOH
https://paperpile.com/c/UkYWw3/dJOH
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Code Name/form Type Bands* Calibration or validated 

range 

Reference 

J QAA_v6 semi-analytical (not reproduced) 0. 02 ~70. 21 mg m-3 Lee et al. 2002 

K QAA_Tur semi-analytical (not reproduced) 59 ~1376 mg m-3 Mishra et al. 2013, 

2014 

L MODIS SA semi-analytical (not reproduced) 0 ~ 2 mg m-3 Carder et al. 2004 

*Reflectance bands are as used in the original definition, taking the following forms: 

Rrs is above-surface remote-sensing reflectance 

Rrc is the atmospherically Rayleigh-corrected reflectance.  

Table 13: Summary of candidate Turbidity algorithms tested for MODIS/VIIRS 

Code Name/form Type Bands* Calibration or validated 

range 

Reference 

A polynomial single red band Rrs(645) TSM <30 mg L-1 Petus et al. 2010 

B linear single red band Rrs(645) Turb 0 ~ 15 NTU  Moreno-Madrinan et 

al. 2010 

C exponential single red band Rrs(645) Turb 1. 8 ~ 160 FTU Constantin et al. 

2017 

D power law single red band Rrs(645) Turb 0. 9 ~ 8 NTU Chen et al. 2007 

E polynomial single NIR band nLw(869) Turb 1~300 NTU Wang et al. 2012 

F power law NIR-red ratio Rrs(859)/Rrs(645) Turb 50 ~ 1000 NTU Robert et al. 2016 

G exponential NIR-red ratio R(859)/R(645) Turb 77. 4 ~2193 NTU 

TSM 77 ~ 2182 mg L-1 

Doxaran et al. 2009 

H semi-empirical red or NIR ρw(645), ρw(859)  

 

Turb 1. 8 ~ 988 FNU Dogliotti et al. 2015 

*Reflectance bands are as used in the original definition, taking the following forms: 

Rrs is above-surface remote-sensing reflectance 

nLw is the normalized water-leaving radiance.  

R is the ‘surface reflectance’ of the MODIS land product.  

ρw is the water reflectance, which is defined as πLw (λ) / E0d+ (λ), where Lw is the water-leaving radiance and E0d+ is the above-

water downwelling irradiance.  

Table 14 Summary of candidate TSM algorithms tested for MODIS/VIIRS 

Code Name/form Type  Bands* Calibration or validated 

range 

Reference 

I linear single red band R(645) 0 ~ 55 mg L-1 Miller and McKee 

2004; Sipelgas et al. 

2006 

J  polynomial single red band Rrs(645) 0 ~ 30 mg L-1 Petus et al. 2010 

K exponential single red band Rrs(645) 0 ~ 300 mg L-1 Zhao et al. 2011; Shi 

et al. 2015 

L polynomial single red band nLw(645) 0 ~ 16 mg L-1 Ondrusek et al. 2012 

M exponential NIR-red ratio R(859)/R(645) 77 ~ 2182 mg L-1 Doxaran et al. 2009 

https://paperpile.com/c/UkYWw3/jOHl
https://paperpile.com/c/UkYWw3/hv84+V3sY
https://paperpile.com/c/UkYWw3/hv84+V3sY
https://paperpile.com/c/UkYWw3/cHj8
https://paperpile.com/c/UkYWw3/8tbm
https://paperpile.com/c/UkYWw3/2BXm
https://paperpile.com/c/UkYWw3/2BXm
https://paperpile.com/c/UkYWw3/o4NH
https://paperpile.com/c/UkYWw3/o4NH
https://paperpile.com/c/UkYWw3/INXE
https://paperpile.com/c/UkYWw3/IIX6
https://paperpile.com/c/UkYWw3/Jox5
https://paperpile.com/c/UkYWw3/NuCV
https://paperpile.com/c/UkYWw3/nPHU
https://paperpile.com/c/UkYWw3/hkrM+uiF8
https://paperpile.com/c/UkYWw3/hkrM+uiF8
https://paperpile.com/c/UkYWw3/hkrM+uiF8
https://paperpile.com/c/UkYWw3/8tbm
https://paperpile.com/c/UkYWw3/Wa81+3hQ9
https://paperpile.com/c/UkYWw3/Wa81+3hQ9
https://paperpile.com/c/UkYWw3/Ren4
https://paperpile.com/c/UkYWw3/NuCV
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N power law NIR-red ratio Rrs(859)/Rrs(645) 18 ~ 927 mg L-1 Robert et al. 2016 

O polynomial NIR-red ratio  log[Rrs(859)]/log[

Rrs(645)] 

5. 8 ~ 577. 2 mg L-1 Chen et al. 2015 

P linear NIR-red ratio log[Rrs(859)]/log[

Rrs(645)] 

1 ~ 64 mg L-1 Wang et al. 2010a 

Q exponential red and NIR Rt(645)-Rt(859) 0 ~ 12 mg L-1 Hu et al. 2004 

R linear red and NIR Rrs(645)-Rrs(859) 0. 3 ~ 20 mg L-1 Tarrant et al. 2010 

S linear two NIR bands ρw(859)-ρw(1240) 74 ~ 881 mg L-1 Wang et al. 2010b 

T exponential three bands Rrs(488), 

Rrs(555), Rrs(645) 

1~ 300 mg L-1 Zhang et al. 2010 

U semi-analytical red nLw (748) 0. 18 ~ 28. 3 mg L-1 Binding et al. 2010 

V generic single-

band 

red or NIR ρw(645) or 

ρw(859) 

1 ~100 mg L-1 Nechad et al. 2010; 

Polito et al. 2016 

*Reflectance bands are as used in the original definition, taking the following forms: 

R is the ‘surface reflectance’ of the MODIS land product.  

Rrs is above-surface remote-sensing reflectance 

Rt is the total radiance observed by MODIS (Ft) divided by the annual mean extraterrestrial solar irradiance F0.  

nLw is the normalized water-leaving radiance.  

ρw is the water reflectance, which is defined as πLw (λ) / E0d+ (λ), where Lw is the water-leaving radiance and E0d+ is the above-

water downwelling irradiance.  

Table 15 Summary of candidate new Chla algorithms for OLCI 

Algorithm Architectural 

approach 

Formular Original 

training 

(mg.m-3) 

reference 

OC4_OLCI Blue-green ratios MBR=Rrs(443>490>510)/Rrs560 0.01 to 78 (O'Reilly and 

Werdell 2019) 

OC5_OLCI Blue-green ratios MBR=Rrs(413>443>490>510)/Rrs560 0.01 to 78 (O'Reilly and 

Werdell 2019) 

OC6_OLCI Blue-green ratios MBR=Rrs(413>443>490>510)/M(560&665) 0.01 to 78 (O'Reilly and 

Werdell 2019) 

OC4_MERIS Blue-green ratios MBR=Rrs(442>490>510)/Rrs560 0.01 to 78  (O'Reilly and 

Werdell 2019) 

OC5_MERIS Blue-green ratios MBR=Rrs(412>442>490>510)/Rrs560 0.01 to 78 (O'Reilly and 

Werdell 2019) 

OC6_MERIS Blue-green ratios MBR=Rrs(412>442>490>510)/M(560&665) 0.01 to 78 (O'Reilly and 

Werdell 2019) 

Optimized 

QAA for OLCI 

Semi-analytical 1. Modified reference band (𝜆0 ) of 709 or 754 

nm in Step 3: 

𝑀𝐶𝐼 = 𝑅𝑟𝑠(709) − 𝑅𝑟𝑠(665)

− (𝑅𝑟𝑠(754) − 𝑅𝑟𝑠(665))

∗
709 − 665

754 − 665
 

If MCI≤0.0016, 𝜆0 =709 nm, else, 𝜆0 =754 nm 

2. Modified 𝑎𝑝ℎ(665) equation and η value in 

step 7 

𝑎𝑝ℎ(665) =  𝜂 𝑎𝑛𝑤(560) + (1 − 𝜂) 𝑎𝑛𝑤(665)  

 

5 to 100 (Liu, Li et al. 2020) 

https://paperpile.com/c/UkYWw3/Jox5
https://paperpile.com/c/UkYWw3/MYBL
https://paperpile.com/c/UkYWw3/2SwE
https://paperpile.com/c/UkYWw3/rY2L
https://paperpile.com/c/UkYWw3/Yb9b
https://paperpile.com/c/UkYWw3/w4Bv
https://paperpile.com/c/UkYWw3/trvx
https://paperpile.com/c/UkYWw3/kGIV
https://paperpile.com/c/UkYWw3/qbOz+E2DL
https://paperpile.com/c/UkYWw3/qbOz+E2DL
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MDN Machine learning MDN 0.2 to 1209 (Pahlevan, Smith 
et al. 2020, 
Pahlevan, Smith 
et al. 2021, Smith, 
Pahlevan et al. 
2021) 

Bayesian Bayesian 

probabilistic 

neural networks 

BNN 0.05 to 68 (Werther, 
Odermatt et al. 
2022) 

Smith18 Switched 

blending (G2B 

and OCI) 

𝐶ℎ𝑙𝑏𝑙𝑒𝑛𝑑(𝑚𝑔 𝑚−3) = 𝛼1𝐶ℎ𝑙𝐺2𝐵 + 𝛼2𝐶ℎ𝑙𝑂𝐶𝐼 

Where 𝛼1 = (Ø − 0.75)/(1.15 − 0.75); 𝛼2 = (1.15 −
Ø)/(1.15 − 0.75) and Ø=𝑅𝑟𝑠(708)/𝑅𝑟𝑠(665) 

 

G2B algorithm refers to Gilerson, Gitelson et al. (2010); 

 

𝐶ℎ𝑙𝑎 [𝑚𝑔 𝑚−3] = (𝐴 × (
𝑅(709)

𝑅(665)
) + 𝐵)

𝐶

 

OCI algorithm refers to combined CI (Chl<0.25) and 

OC4E (Chl>0.25) algorithms: 

 

𝐶𝐼 = 𝑅𝑟𝑠(560) − [𝑅𝑟𝑠(443)
+ (560 − 443)(665 − 443)
∗ (𝑅𝑟𝑠(665) − 𝑅𝑟𝑠(443))] 

𝐶ℎ𝑙𝐶𝐼(𝑚𝑔 𝑚−3) = 10(𝑎1+𝑏1∗𝐶𝐼) 

 

 

𝐶ℎ𝑙𝑂𝐶4(𝑚𝑔 𝑚−3) = 10(𝑎+𝑏×𝑋+𝑐×𝑋2+𝑑×𝑋3+𝑒×𝑋4) 

 

0.43 to 309 (Smith, Lain et al. 
2018) 

 

Table 16 Summary of candidate new Turbidity/TSM algorithms for OLCI 

Algorithm Architectural 

approach 

Formular Original 

training (g.m-

3) 

reference 

SOLID20 MDN-based 

bbp inversion 

Classification based 0.1 to 2626.8 (Balasubramania

n, Pahlevan et al. 

2020) 

Jiang21 Semi-analytical Classification based 0.09 to 2627 (Jiang, 

Matsushita et al. 

2021) 

Novoa21G Switch 

blending 
Linear-Green (tsm<10): 𝑎 × 𝑅𝑤(560) 

Linear-Red (tsm 10~50): b× 𝑅𝑤(665) 

Poly-NIR (tsm>50): 𝑐 × 𝑅𝑤(865)2 + 𝑑 ×
𝑅𝑤(865) 

2.6 to 1579.1 (Novoa, Doxaran 

et al. 2017) 

Novoa21B Switch 

blending 
Linear-Green (tsm<10): 𝑎 × 𝑅𝑤(560) 

Nechad et al. (2010) NIR (tsm 10~50): 
𝑏×𝑅𝑤(665)

1−𝑅𝑤(665) 𝑐⁄
 

Nechad et al. (2010) NIR (tsm>50): 
𝑑×𝑅𝑤(865)

1−𝑅𝑤(865) 𝑒⁄
 

17.8 to 340.6 (Novoa, Doxaran 

et al. 2017) 
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Uudeberg2

0-clear 

Band ratios 𝑙𝑜𝑔𝑇𝑆𝑀 = 𝑎 × 𝑅𝑤560 + 𝑏 × 𝑅𝑤665

+ 𝑐 ×
𝑅𝑤490

𝑅𝑤560
+ 𝑑 

0.5 to 215.2 (Uudeberg, 

Aavaste et al. 

2020) 

Uudeberg2

020-

moderate 

Band ratios 
𝑇𝑆𝑀 = 𝑎 × (𝑅𝑤865 −

𝑅𝑤778.75 + 𝑅𝑤865

2
)

+ 𝑏 

0.5 to 215.2 (Uudeberg, 

Aavaste et al. 

2020) 

Uudeberg2

0-Turbid 

Band ratios 
𝑇𝑆𝑀 = 𝑎 × (𝑅𝑤865 −

𝑅𝑤778.75 + 𝑅𝑤865

2
)

+ 𝑏 

0.5 to 215.2 (Uudeberg, 

Aavaste et al. 

2020) 

Uudeberg2

0-

VeryTurbid 

Band ratios 𝑙𝑜𝑔𝑇𝑆𝑀 = 𝑎 × 𝑙𝑜𝑔𝑅𝑤560 + 𝑏 × 𝑅𝑤665

+ 𝑐 × 𝑙𝑜𝑔
𝑅𝑤490

𝑅𝑤560
+ 𝑑 

0.5 to 215.2 (Uudeberg, 

Aavaste et al. 

2020) 

Uudeberg2

0-Brown 

Band ratios 
𝑙𝑛𝑇𝑆𝑀 = 𝑎 × (𝑅𝑤708.75

−
𝑅𝑤778.75 + 𝑅𝑤665

2
) + 𝑏 

0.5 to 215.2 (Uudeberg, 

Aavaste et al. 

2020) 

ANTA21 

(Turbidity) 

(based on 

Nechad 

2009, 

tunned for 

OLCI) 

 T(red) was used if RW(red) < 0.05, and T(NIR) 
if 
RW(red) > 0.07, with a linear blending in the 
transition. 

Red=665 nm 

NIR=865 nm 

𝑇(𝜆) =
𝐴(𝜆) ∗ 𝑅𝑤(𝜆)

1 − 𝑅𝑤(𝜆)
𝐶(𝜆)

 

0.83 to 176 

FNU 

(Nechad, Ruddick 

et al. 2009, 

Dogliotti, Ruddick 

et al. 2015, Klein, 

Lantuit et al. 

2021) 

 

5.2 Validation results  

Prior to the Lakes_cci, extensive validation exercises were carried out on satellite-derived LWLR against 

in-situ remote-sensing reflectance (predominantly from above-water measurements) as well as on the 

retrieval of chlorophyll-a from atmospherically corrected LWLR. The number of satellite vs in-situ 

matchups is limited and these analyses have mostly focussed on products derived from MERIS.  

5.2.1 Atmospheric correction algorithms 

For LWLR, six algorithms for MERIS were initially compared: MEGS8.1 (MERIS default), FUB, CoastColour, 

Case2Regional, SCAPE-M and POLYMER. From these results (Figure 12 to Figure 14 give examples of 

MEGS and the best performing algorithms), POLYMER was selected based on its superior linearity and 

correlation with in-situ data despite a significant negative bias, which appears to be associated with 

overestimation of the atmospheric radiance component rather than the water model which is not yet well 

understood. Linearity in the response nevertheless suggests that algorithms for the retrieval of 

chlorophyll-a, total suspended matter or turbidity can be tuned to reproduce in-situ observations. This 

procedure is described in more detail in the E3UBv2.1.1 document.  



 

 

Lakes_CCI+ - Phase 2 –  D2.1. Product Validation and Algorithm Selection Report (PVASR) 

Reference: CCI-LAKES2-0011-PVASR  - Issue 2.1.1 – 17/10/2023  
Internal/Interne/Interno © 2019 CLS. All rights reserved. Proprietary and Confidential.  

 

31/58 

 

 

Figure 12 LWLR retrieval per MERIS waveband using the default MEGS algorithm. Matchups are for a ±7-day matchup 
window and 3x3 pixel extraction window and include results of 23 lakes.  

 

Figure 13 As previous but for the POLYMER algorithm. 
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Figure 14 As previous but for the Lakes C2R algorithm. 

 

5.2.2 Chlorophyll-a algorithms 

5.2.2.1 Chlorophyll-a algorithms for MERIS 

Despite higher uncertainty in the validation of LWLR due to scarce in-situ reference data, chlorophyll-a 

and suspended matter and/or turbidity algorithms may be evaluated and subsequently tuned based on 

a larger number of matchups with MERIS data in the LIMNADES data set for these measurands. Figure 

15 shows results of the round-robin comparison of algorithms for chlorophyll-a, ultimately resulting in the 

selection of OC2, a near infra-red (NIR) over red band algorithm based on Gilerson et al. (2010), the semi-

analytical NIR-red ratio algorithm of Gons et al. (2005) and a modified Quasi-Analytical Algorithm (QAA) 

following Mishra et al. (2013). A separate algorithm tuning exercise was also carried out using exclusively 

in-situ (reflectance and concentration) data, as reported by Neil et al. (2019).  
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Figure 15 Round-robin comparison of chlorophyll-a retrieval algorithms, including NIR-red band ratio algorithms, ocean 
colour blue-green ratio algorithms, neural networks, analytical (multi-band) inversion algorithms and the maximum 
peak height algorithm.  

 

5.2.2.2 Chlorophyll-a algorithms for MODIS 

A Round-robin comparison was performed to assess the candidate Chl-a algorithms for MODIS. A total of 

nine algorithms were compared, including three blue-green band ratio algorithms, two NIR-red band ratio 

algorithms, one peak height algorithm, and two semi-analytical algorithms. Figure 16 Shows the error 

metrics of round-robin comparison for each evaluated Chl-a algorithm against in-situ measurements. 

Based on this analysis, the NASA OC2(O'Reilly et al. 1998), OC3, OC2_HI algorithms (O'Reilly et al. 1998), 

and R748_667 algorithm (Dall'Olmo et al. 2005) were selected for the retrieving of Chl-a for MODIS. 

Additionally, a separate algorithm tuning exercise was carried out using satellite and in-situ matchups for 

each ocean water type (OWT), taking data points within the highest 40% OWT membership scores.  
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Figure 16 Statistical metrics calculated between MODIS-derived and in-situ Chl-a 

 



 

 

Lakes_CCI+ - Phase 2 –  D2.1. Product Validation and Algorithm Selection Report (PVASR) 

Reference: CCI-LAKES2-0011-PVASR  - Issue 2.1.1 – 17/10/2023  
Internal/Interne/Interno © 2019 CLS. All rights reserved. Proprietary and Confidential.  

 

35/58 

 

5.2.3 TSM and Turbidity algorithms 

5.2.3.1 TSM and Turbidity algorithms for MERIS 

Algorithm comparisons for TSM and Turbidity have not yet been completed for the full set of candidate 

algorithms. An initial selection was made during GloboLakes based on the performance of TSM retrieval 

algorithms by Zhang et al. (2010), Binding et al. (2010) and Vantrepotte et al. (2011), which target 

different concentration ranges and optical water types. These algorithms were subsequently converted 

to Turbidity using the coefficients contained in the work by Nechad et al. (2010).  

5.2.3.2 TSM and Turbidity algorithms for MODIS 

Algorithm comparisons were performed to evaluate TSM and Turbidity for each of the examined 

algorithms against in-situ measurements. However, it was observed that the TSM algorithms did not 

exhibit satisfactory performance for MODIS measurements. As a result, the CRDP dataset does not 

include TSM (Turbidity) retrieval using MODIS. 

 

5.3 Identified issues  

At present, no specific validation or tuning of individual algorithms has been carried out for OLCI which 

instead inherits algorithms from tuning and validation for MERIS. Similarities in radiometric performance 

and waveband configuration between MERIS and OLCI allow us to extrapolate the current results to OLCI. 

Nevertheless, given the prolonged operation of OLCI and the emergence of new algorithms in recent 

years, a comprehensive analysis specifically tailored to OLCI is necessary. To address this, a thorough 

evaluation of newly published algorithms for OLCI is planned with findings to be incorporated into CRDP 

v3.0. 

All algorithms which derive substance concentrations or turbidity from LWLRL have been tuned using 

water quality measurements and in-situ hyperspectral radiometric data, with the exception of MODIS-

Aqua algorithms which have been tuned using LWLR derived from the satellite. It is important to 

acknowledge that atmospheric correction poses a significant challenge in remote estimations of water 

quality parameters. An analysis on Chla (Pahlevan et al. 2021) suggests that atmospheric correction can 

lead to a loss of performance of at least 30%. Therefore, when directly applying these algorithms to 

satellite data, their performance should be expected to decrease. To address this issue, it is beneficial to 

conduct tuning using satellite-derived reflectance. This additional tuning step aims to eliminate 

systematic biases introduced by the atmospheric correction procedure. By incorporating satellite-derived 

reflectance, the algorithms can better account for and mitigate the impact of atmospheric effects, 

enhancing their performance for water quality parameter estimations. 

The following potential issues have been identified for the candidate algorithms to be tested for 

OLCI/MERIS: 

Chl-a algorithms (in Table 15): 

• The MDN algorithm is based on machine learning, which relies on the dataset used for training. 

Therefore, the performance of this algorithm is heavily dependent on the quality and 

representativeness of the training data. Further tuning may not be applicable for this algorithm, 

and validation will not be independent from the training data set. 

• Similarly, the Bayesian probabilistic neural networks (BNN) method is a machine learning-based 

data-driven approach. Its performance is highly influenced by the dataset used for model training. 

The original training range of this model is designed for oligotrophic and mesotrophic lakes, and 

its applicability to eutrophic and hyper-eutrophic lakes is yet to be tested. Further tuning for this 

algorithm might not be applicable either.  
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• The Smith18 algorithm is a switch-blending algorithm that combines the G2B and OCI algorithms. 

Its performance, especially when integrated into our weighted blending procedure, still needs to 

be evaluated. Tuning of this algorithm should be conducted separately for the two underlying 

TSM/Turbidity algorithms (Table 16) 

• The SOLID20 algorithm uses a classification-based approach with an MDN method for bbp 

(particulate backscatter) retrieval. As it is based on machine learning, further tuning may not be 

applicable to this algorithm. 

• The Novoa21G and NovoaB algorithms are both switch-blending algorithms. It is important to 

verify whether the outputs of these algorithms exhibit a seamless transition between the different 

blending modes. Additionally, each algorithm incorporated in this switch-blending approach 

should be individually tuned to optimize their performance. 
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6 Lake Ice cover – LIC 

 

6.1 Candidate algorithms  

Four machine learning (ML) algorithms were evaluated for their performance in classifying lake ice cover, 

open water and cloud cover:  multinomial logistic regression (MLR), support vector machine (SVM), 

random forest (RF), and gradient boosting trees (GBT). The characteristics of each ML algorithm are 

summarized below. Full details, including the hyperparameters used by each classifier, can be found in 

Wu et al. (2021). 

Multinomial logistic regression (MLR). MLR is an extension of logistic regression applied to multiple 

response variables. Logistic regression is used as an approach to develop a model of the log odds of 

binary class probabilities as a linear function of one or more explanatory variables (Murphy, 2013). Then, 

the model can inversely compute the probability of each class using the explanatory variables of a given 

unknown sample. Specifically, in order to tackle multi-class problem, MLR designates one of the response 

variables as the baseline class. In this manner, the probability of membership in the different classes is 

related to the probability of membership in the baseline class. The optimal values of the function 

parameters are computed using the training data. The MLR probability estimate for each class falls within 

a range from 0 to 1, resulting in a realistic probability surface. The maximum probability among the 

classes is the predicted class for an unknown sample. 

Support vector machine (SVM). SVM’s basic idea is to determine support vectors to build an optimal 

boundary separating the given observations in terms of classes (Burges, 1998; Vapnik, 1998; Weston & 

Watkins, 1999). The distance from the support vectors to a hyperplane is known as the margin. SVM, in 

its simplest form, is a linear binary classifier that labels a given sample using a hyperplane in the original 

input space. However, to solve the inseparability problem in the original space, SVM maps 

multidimensional data into an enlarged feature space to build a hyperplane using a kernel function (e.g., 

polynomial, radial basis, sigmoid). Since the radial basis function (RBF) kernel has a promising ability in 

non-linear classification, and as shown in several recent studies (Féret et al., 2019; Ge et al., 2018; 

Huang et al., 2019; Tian et al., 2020), the RBF kernel was adopted in this research over the linear kernel. 

We applied the one-vs-one scheme to handle the multiclass problem. SVM is sometimes called a soft 

margin classifier because training samples could lie on the incorrect side of the hyperplane, thereby 

creating a violation. The model hyperparameter, Cost, is a regularization constant controlling the violation 

degree. Another model hyperparameter, Gamma, is the kernel width of RBF. 

Random forest (RF). As an ensemble approach, RF integrates decision trees developed by bagging 

samples to improve the limitations of the single-tree structure (Breiman, 2001). The bagging creates 

several subsets randomly from training samples with replacement (i.e. a sample can be collected several 

times in the same subset whereas other samples are probably not selected in this subset). Subsequently, 

each data subset is used to train a decision tree. For building a single tree, a random sample with a 

number of variables is chosen as split candidates from all variables. The number of variables available 

to a split is one of key RF hyperparameters, denoted as mtry. For the whole RF model, the number of 

trees (ntree) is defined a priori to develop various independent classifier outputs. The final class of each 

unknown sample is assigned by the majority vote of all outputs from the trees. 

Gradient boosting trees (GBT). GBT is another ensemble classifier inspired by the boosting technique 

developed by Freund and Schapire (1996). In contrast to RF, GBT applies the entire training dataset on 

classification rather than resampling partial samples. The training samples are initially assigned equal 

weights in the first iteration to develop the first tree, and afterwards the weights are altered based on the 

fitting performance to the training dataset. Misclassified samples in the previous iteration are assigned 

a higher weight in subsequent iterations. Each tree is also given a weight based on the fitting error. The 
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final class of an unknown observation is assigned by computing the output of all trees multiplied by their 

weights. The term, gradient, is associated with iterative functional gradient descent algorithms used to 

optimize cost functions. Similar to RF, the hyperparameters of GBT, as a tree-based classifier, include the 

number of variables available to a split (mtry) and the number of trees (or iterations) (ntree). Moreover, 

an additional hyperparameter, learning rate (lr), controls overfitting in the range between 0 and 1 via 

shrinkage. The higher lr drives a faster learning process, and vice versa. 

The candidate algorithm retained for the retrieval of LIC is the RF classifier. RF was found to outperform 

MLR and SVM, and comparable to GBT for lake ice cover, open water and cloud classification. While RF 

and GBT provided similar results following a comprehensive accuracy assessment (cross validation (CV): 

random k-fold as well as spatial and temporal CV), the former was selected for LIC product generation 

since it was determined to be less sensitive to the to the choice of hyperparameters necessary for 

classification compared to GBT, MLR and SVM. Validation results that support the selection of the RF 

classifier for Lakes_cci LIC product generation are provided below. 

 

6.2 Validation results  

To identify the best classifier, 17 lakes distributed across the Northern Hemisphere were selected (Figure 

17 and Table 17). Training, testing and validation of the four machine learning algorithms found that RF 

with a combination of visible, near infrared, and mid infrared bands was the best choice for LIC product 

(Figure 18). More specifically, six MODIS (Terra/Aqua) TOA reflectance bands and the solar zenith angle 

(SZA) are used for feature retrieval (i. e. for labelling as water, ice, or cloud) (Wu et al., 2021). The 

reflectance bands are MOD02QKM/MYD02QKM at 250 m (band 1: 0.645 µm and band 2: 0.858µm) 

and MOD02HKM/MYD02HKM at 500 m (band 3: 0.469µm; band 4: 0.555µm; band 6: 1.640 µm; band 

7: 2.130 µm) resolutions. Geolocation is provided at 1 km resolution and is interpolated to 250 m. 

 

 

Figure 17 Geographical distribution of lakes used for LIC algorithm development and validation 
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Table 17 List of lakes for LIC algorithm development and (internal) validation 

Lake Country Latitude Longitude Elevation (m) Area (km2) 

Amadjuak Canada 64.925 -71.149 113 3,115 

Athabasca Canada 59.424 -109.34 213 7,900 

Baikal Russia 53.525 108.207 456 31,500 

Erie Canada/USA 42.209 -81.246 174 25,821 

Great Bear Canada 66.024 -120.61 186 31,153 

Great Slave Canada 61.579 -114.196 156 28,568 

Huron Canada/USA 44.918 -82.455 176 59,570 

Inari Finland 69.048 27.876 118 1,040 

Ladoga Russia 60.83 31.578 5 18,135 

Michigan USA 43.862 -87.093 177 58,016 

Nettilling   Canada 66.42 -70.28 30 5,542 

Onega Russia 61.75 35.407 35 9,890 

Ontario Canada/USA 43.636 -77.727 75 19,009 

Superior Canada/USA 47.945 -87.32 183 82,367 

Taymyr Russia 74.538 101.639 6 4,560 

Vanern Sweden 58.88 13.22 44 5,650 

Winnipeg Canada 52.421 -97.677 217 23,750 

 

Figure 19 shows the accuracies computed from a 100-fold cross-validation (CV) using the samples of 

MODIS Terra from the 17 lakes. Random forest (RF) was found to outperform MLR and SVM and 

comparable to GBT for lake ice cover, open water and cloud classification in a paper by the developers of 

the current LIC product (Wu et al. 2021). Furthermore, RF provided consistent results based on a 

comprehensive accuracy assessment (random k-fold as well as spatial and temporal CV as shown in  

Table 18). 
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Figure 18 Comparison of classification accuracies (%) obtained with different band configurations across classifiers. 

The 7-band combination using RF is the one retained for generation of the LIC v2.1 product (Wu et al., 2021) 

   

 

Figure 19 Comparison of accuracies (%) obtained using random 100-fold CV across classifiers for the ice, water and 

cloud classes individually, and overall (OA) (Wu et al., 2021) 
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Table 18 Accuracy assessment using temporal and spatial CV methods (adapted from Wu et al., 2021) 

 MLR SVM RF GBT 

Temporal CV accuracy 93.21% 83.00% 95.49% 95.15% 

Spatial CV accuracy 90.98% 79.36% 95.64% 95.26% 

 

6.3 Identified issues  

The RF classifier was selected for LIC product generation since it has been shown to outperform 

threshold-based approaches (as determined during the early stages of Lakes_cci Phase 1) and the other 

machine learning classifiers as presented in the previous section. While high overall accuracies (>95%) 

has been achieved with the RF classifier in both spatial and temporal transferability assessments (Wu et 

al., 2021), visual assessment of CRDP v2.1 LIC product quality over many lakes during both the ice freeze-

up and break-up periods has revealed the need to collect more training and test sites to further improved 

product quality for future releases. 

As with any lake product generated from optical data, the presence of clouds as well as extensive cloud 

cover periods and low solar illumination angles, particularly during the fall freeze-up at high latitudes, 

introduce classification errors and limit the retrieval of open water and ice cover for many days of the 

year. In CRDP v2.1, highly turbid lakes or sections of lakes have been found to occasionally be 

misclassified as ice-covered during the open water season. This is also the case for a few lakes that are 

characterized by snow-free “blue” clear ice during spring break-up; here ice is misclassified as open water. 

One limitation of the LIC product is that no retrieval is performed when the solar zenith angle is >85 

degrees; a limitation due to the use of MODIS shortwave bands that record very low surface reflectance 

during ice formation late fall and wintertime. Work is underway to reduce the classification errors 

described above through the collection of additional training sites at lake locations where 

misclassification (turbid water as ice cover and melting blue clear ice as open water) has been found to 

occur. Uncertainty is currently being reported has overall classification error for each class (water, ice, 

clouds). Improved classification accuracy and provision of per-pixel uncertainty (aleatoric, systematic and 

total) estimates are planned for CRDP v3.0. 
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7 Lake Ice Thickness- LIT 

 

7.1 Candidate algorithms  

Few studies have investigated the potential of satellite remote sensing data for the estimation of LIT to 

date. Kang et al. (2010) first showed that brightness temperature (Tb) measurements from the Advanced 

Microwave Scanning Radiometer for EOS (AMSR-E) at 18.7 GHz frequency (V polarization) to be highly 

sensitive (R2 = 0.91) to the seasonal evolution of ice thickness on Great Bear Lake (GBL) and Great Slave 

Lake (GSL), Canada. Based on this finding, Kang et al 2014 proposed empirical (linear regression) 

equations to estimate LIT for the two lakes using 18.7 GHz V-pol data (2002-2009), achieving a mean 

bias error (MBE) of 0.06 m and root mean square error (RMSE) of 0.19 m when compared to in-situ 

measurements. Surface temperature observations of snow-covered lake ice from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) have also been assessed for the estimation of LIT. Using 

heat balance terms and snow depth derived from the Canadian Lake Ice Model (CLIMo, Duguay et al. 

2003), Kheyrollah et al. (2017) retrieved ice thicknesses up to ∼ 1.2 m from MODIS (2002-2014) with 

an RMSE of 0.17 m and MBE of 0.07 m when comparing LIT values from single pixels (1 km x 1 km) to 

those from close by near-shore field measurements collected on GSL and Baker Lake, Canada. Beckers 

et al. (2017) analysed waveforms from CryoSat2 (CS2) Ku-band synthetic aperture radar (SAR) altimetry 

for the estimation of LIT on the Great Bear Lake and Great Slave Lake. By exploiting the increasing 

distance between peak radar returns from the snow-ice and ice-water interfaces on the leading edge of 

waveforms with ice growth, the authors estimated ice thickness empirically with RMSE < 0.33 m when 

compared to in-situ measurements from the same near-shore location on GSL as in previous 

investigations. While data from CS2 show strong potential for the retrieval of LIT, the drifting orbit of the 

satellite makes it difficult to build a geographically precise time series of LIT measurements (i.e. repeated 

along the same tracks over the lifetime of the satellite) required for climate monitoring. Also, the LIT 

retracker algorithm developed in Beckers et al. (2017) relies on the empirical thresholding of the radar 

waveforms that is hard to generalize to follow the LIT evolution, in particular at the seasonal transitions, 

and can lead to biases and sub-optimal LIT estimates.  More recent studies (e.g., Shu et al., 2020; Yang 

et al., 2021), have estimated LIT with radar altimetry data, more specifically from Sentinel-3 and Jason-3 

missions, in the context of lake water level analysis, as the presence of lake ice has been shown to 

introduce a bias on winter water level measurements. These studies also used empirical methods based 

on already existing retrackers that are not specifically designed for the estimation of LIT. To overcome 

these limitations, Mangilli et al. (2022) developed a novel physically-based retracking algorithm, the 

LRM_LIT retracker, founded on the exploitation of the Ku band radar waveforms data in Low Resolution 

Mode (LRM)  specifically tailored for the retrieval of LIT. The advantage of a physically-based and analytical 

retracker is that it does not rely on empirical or by-hand settings, allowing to derive robust and continuous 

LIT estimates over different target lakes and LRM radar altimetry missions, making the LRM_LIT algorithm 

the suitable tool to build robust and long LIT timeseries for climate monitoring. The LRM_LIT retacker is 

the algorithm currently being implemented in the lakes_cci LIT processor. 

 

7.2 Validation results  

The validation results of the selected LRM_LIT retracker algorithm are presented in detail in Mangilli et 

al. (2022) and are also described in the ATBD v2.1.1, E3UB v2.1.1 and PVP v2.1.1 documents. 

The LRM_LIT retracker retained for the generation of the LIT product has been validated on simulations 

representative of Jason-like missions over Great Slave Lake. A summary is given in Figure 20, where the 

top plots refer to winter-like simulated waveforms (left panel) and the LIT histogram (right panel). 
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Figure 20: Validation of the LIT estimation with the LRM_LIT retracker on Jason-like simulations. In the left column 

are shown Jason-like waveform simulations corresponding to the winter-like SIM1 waveforms (top) and to the summer-

like SIM2 waveforms. In the right column are shown LIT histograms computed for the winter-like simulations SIM1 (top 

panel) and for the summer-like simulations SIM2 (bottom panel). The blue lines correspond to the Gaussian fit of the 

histograms. The input values used to generate the simulations are also shown as dashed black lines 

The input value used to generate the simulations is shown as a dashed line. The same description applies 

to the bottom plots, for the summer-like simulations without the ice signature. In both cases the LRM_LIT 

retracker gives unbiased LIT results. The uncertainty of the LIT retrieval from the winter-like simulations 

is ~10 cm. 

LIT retrievals from satellite missions have been evaluated against LIT simulations from the 

thermodynamic lake ice model CLIMo (Duguay et al., 2003). A qualitative comparison with in-situ data 

was also performed when possible1. Figure 21 provides an example of the comparison of the LIT 

estimations obtained within a winter season over Great Slave Lake with the LRM_LIT retracker applied to 

Jason-2 data (blue triangles) and Jason-3 data (red stars) and LIT from CLIMo simulations with different 

on-ice snow depth scenarios (diamonds) and in-situ data (circles). There is an excellent agreement 

between Jason-2 and Jason-3 LIT estimates, which are fully compatible with the thermodynamic 

simulations and qualitatively in agreement with in-situ data. We note that, in general, the LIT melting 

phase is detected earlier with the satellite-based measurements because of snow melting that perturbs 

the radar echoes. 

 

 

1 It is worth noting that the comparison between LIT estimates from satellite missions and in-situ data must be taken with 

caution. In-situ data are typically collected near the shore, while satellite data are taken from the middle of the lake to avoid land 

contamination. These can represent different environments in terms of bathymetry, wind exposure, snow type and quantity. All 

these parameters play a key role on ice formation and thickness and they can lead to significant LIT differences. 
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Figure 21 LIT estimates over Great Slave Lake for the 2015-16 winter season. Shown are a comparison between LIT 

estimates with the LRM_LIT retracker from Jason-2 (triangles) and Jason-3 (stars) data, CLIMo simulations (diamonds) 

and in-situ data (circles). The shaded areas correspond to the LIT estimation uncertainties computed from Jason-2 data 

(blue) and Jason-3 data (red). Three different realizations of CLIMo simulations are shown by varying the amount of 

snow on the ice. The in-situ data consist of ice thickness measurements collected in Back Bay near Yellowknife 

To quantify the comparison between the LIT estimates from Jason-2, Jason-3 and CLIMo, two statistics 

are computed, the MBE: 

        [7.1] 

And the RMSE: 

        [7.2] 

of the LIT estimates derived from Jason-2, LITJ2i , and the other data sets, LITDSi , for the N measurements 

obtained in the middle of the winter season. In the illustrative case of the 2015-16 winter season shown 

in Figure 21, agreement between the Jason-2 (blue triangles) and Jason-3 (red stars) LIT measurements 

is excellent. In the middle of the ice season, the MBE is only 0.013 m and the RMSE is 0.024 m between 

the two data sets. Also, the difference in the LIT mean value is only 0.02 m and that of maximum LIT is 

0.025 m. Both Jason-2 and Jason-3 LIT are in strong agreement with the thermodynamics simulations 

with 50% of snow on ice as input (CLIMo-50 simulations), in particular in the middle of the ice season 

where the MBE between Jason-2 and CLIMo-50 is less than 0.01 m and the RMSE is 0.019 m. Overall, 

these results demonstrate that LIT estimates can be retrieved from radar altimetry data that are 

compatible with thermodynamic simulations and qualitatively in agreement with in-situ measurements. 

Finally, the superposition of the LIT retrievals on RADARSAT-2 synthetic aperture radar (SAR) and MODIS 

optical images allows for a better assessment of the consistency of the LIT estimates as they provide 

valuable information about the state of the ice and overlaying snow cover. Figure 22 shows (left column 

from top to bottom) the Jason-2 LIT estimates superimposed on RADARSAT-2/MODIS images obtained 

within one day of Jason-2 overpasses in December, February, March and end of April. The ice thickness 

is colour coded and ranges from no or thin ice (0-0.32 m) in light blue to LIT in the range of 1.28- 1.60 m 

in pink. Plots on the right-hand side of Figure 22, show the spatial evolution of the Jason-2 LIT estimates 

(top plots) and the corresponding evolution of the reduced chi-squared statistics as a function of the 

latitude (bottom plots) for the same dates as in the left column. 
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Figure 22: Evolution of Jason-2 LIT estimates over Great Slave Lake along track 45 for WS3 (winter season 2015-2016). 

Plots in the left column show, from top to bottom, along-track Jason-2 LIT estimates superimposed on MODIS images 

on the same date or within one day in December, February, March and end of April. Plots in the right column show the 

evolution of the Jason-2 LIT estimates as a function of latitude (top plots) and of the reduced chi-squared statistics as 

a function of the latitude (bottom plots) along the track 

 

7.3 Identified issues  

• The LRM_LIT retracker can capture the seasonal transitions of ice forming and melting but cannot 

precisely follow the ice evolution at the transitions because of the difficulty of retracking 

heterogeneous surfaces when the ice is too thin and when snow on the ice surface begins to melt.  

• The LRM_LIT retracker works if the ice related signature, that is, the step like feature in the 

leading edge of the radar waveforms, is present. This signature in the LRM waveform data 

depends on the properties and thickness of the snowpack and the ice layer and could be erased 

if some conditions are not met, as for instance in the case of snow-free lake ice or melting snow 
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on the ice surface. Therefore, there could be lakes for which the ice signature is not clearly marked 

or not present. In this case, these targets could not be analysed with the LRM_LIT retracker. 
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8 Inter-product consistency 

 

8.1 Inter-product consistency checks for CRDP v2.1 

Consistency checks previously covered combinations of LWLR, LSWT and LIC. Results were reported in 

the previous issue of this document and integrated into baseline processing for LWLR in v2.1. Further 

consistency checks now focus on LIT as it enters the baseline processing phase. Consistency checks tend 

to analyse the latest-available version of the products for comparison, so may refer back to v2.0.2.  

LIT products can be checked against LSWT and LIC products for inter-variable consistency. The 

consistency of all three products will govern the expected and observed relationships between these 

variables. The following algorithms are developed on the spatial subsets which are defined by the 

footprints of the LIT calculation. The analysis is therefore restricted to three areas of Great Slave Lake.  

8.1.1 Consistency of LIT versus LSWT 

All LSWT data points of the Lake-CCI product (v2.0.2) within the footprint area are extracted, if they exceed 

a quality value of 3. Daily weighted mean values of LSWT are calculated with respect to their uncertainties.  

The weights w are defined as 𝑤 = 1/𝑙𝑠𝑤𝑡𝑢𝑛𝑐
2   

and the weighted daily mean wlswt as 𝑤𝑙𝑠𝑤𝑡  =  
1

∑ 𝑤 
 

∑ 𝑤 
  ⋅ 𝑙𝑠𝑤𝑡. 

The uncertainty of wlswt (wlswt_unc) is defined as the square root of the weighted variance: 

 

The following consistency categories have been defined for a daily value of lake ice thickness lit and its 

uncertainty lit_unc (with lit>0 and lit_unc>0): 

• All cases, which can be considered consistent: 

o wlswt is not available AND lit-lit_unc>0. The lower bound of lake ice thickness is positive 

and no lake surface water temperature has been observed. 

o wlswt is not available AND (lit-lit_unc < 0 <lit+lit_unc). Lake ice thickness is always 

positive; therefore, most of the lit interval suggests a positive lake ice thickness, while no 

lake surface water temperature has been observed. 

o 𝑤𝑙𝑠𝑤𝑡 − 𝑤𝑙𝑠𝑤𝑡𝑢𝑛𝑐 < 273.15 AND lit-lit_unc > 0. Lake water temperature has been 

observed, but the lower boundary is below the freezing point and lower boundary of lake 

ice thickness is positive. 

• Minor cases of inconsistency: 

o 𝑤𝑙𝑠𝑤𝑡 − 𝑤𝑙𝑠𝑤𝑡𝑢𝑛𝑐 < 273.15 AND (lit-lit_unc < 0 <lit+lit_unc). 

o 𝑤𝑙𝑠𝑤𝑡 − 𝑤𝑙𝑠𝑤𝑡𝑢𝑛𝑐 > 273.15 AND lit-lit_unc <0. The lower bound of the lake water 

temperature is above freezing point and lake ice thickness exists. 

• Inconsistent: 

o 𝑤𝑙𝑠𝑤𝑡 − 𝑤𝑙𝑠𝑤𝑡𝑢𝑛𝑐 > 273.15 AND lit-lit_unc > 0. The lower bound of lake water 

temperature is above freezing point and the lower bound of lake ice thickness is positive. 

There is a physical contradiction in such cases. 
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8.1.2 Consistency of LIT versus LIC 

All LIC data points of the Lake-CCI product (v2.0.2) within the footprint area are extracted. The daily counts 

of the classification classes water, ice, cloud and bad are noted.  

The consistency categories for lake ice thickness (lit>0) against the LIC are defined as: 

• Consistent: 𝑁𝑖𝑐𝑒 > 0 & 𝑁𝑤𝑎𝑡𝑒𝑟 == 0. The daily count of LIC finds only ice, no water. 

• Minor cases of inconsistency (with 𝑁𝑖𝑐𝑒 > 0,  𝑁𝑤𝑎𝑡𝑒𝑟 > 0):  

o 𝑁𝑖𝑐𝑒 > 𝑁𝑤𝑎𝑡𝑒𝑟. LIC identifies more ice pixels than water pixels. 

o 𝑁𝑤𝑎𝑡𝑒𝑟 > 𝑁𝑖𝑐𝑒. LIC identifies more water pixels than ice pixels. 

• Inconsistent: 𝑁𝑤𝑎𝑡𝑒𝑟 > 0 & 𝑁𝑖𝑐𝑒 == 0. Although a lake ice thickness is observed, the LIC finds 

only water, no ice. 

 

8.2 Validation results  

In general, the consistency of the LIT product compared to LSWT and LIC is very good and follows scientific 

expectations. 

8.2.1 LIT versus LSWT 

For most periods, the time series of LIT and LSWT do not overlap. As expected, the products are mutually 

exclusive, except for very few coinciding measurements during ice formation or break down. 

For Pass 45 only two dates are found which are inconsistent according to the defined criteria (Figure 23). 

In the first case (2010-05-28, Figure 24 upper panel) very little coverage is available for the LSWT product, 

which results in little representativity of the mean value 273.646 +/- 0.051K. Values fall within a very 

small range, which leads to a small uncertainty for wlswt. A case like this should most likely be considered 

consistent. 

The second case (2016-12-02, Figure 24 lower panel) is more likely to show a real inconsistency. The 

mean LSWT is 275.88 +/-0.36 K and LIT is 0.47+/-0.08 m. Even the classification suggests water instead 

of ice. 

 

Figure 23: Time series of lake ice thickness (with uncertainty) and daily weighted mean LSWT (with uncertainty) of 
Pass 45. Two dates are found which are inconsistent. 
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Figure 24: LSWT and LIC data for the dates with inconsistency. Mean values and counts are taken from the marked area 
of interest. 

 

For the other two passes (178 and 254) the consistency is color-coded within the timeseries of LIT (Figure 

25). In pass 178 minor inconsistencies are discovered 7 times, and 4 times an inconsistency is 

discovered. (There are some days with two LIT values.) Pass 254 includes 4 cases of minor inconsistency 

and 2 cases of inconsistency. 

Most of these cases occur during ice break up. 

 

 

Figure 25 Timeseries of LIT for passes 178 and 254. Consistency is coded by color: consistent (blue), minor inconsistency 
(violet), inconsistent (red). 
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8.2.2 LIT versus LIC 

In most cases when LIT and LIC are available at the same time, the classification finds ice in the area of 

interest (blue dots in lower panel of Figure 26). For each pass the number of cases with minor 

inconsistency is largest, in which ice and water pixels are present, and more ice than water pixels have 

been counted (see Table 19). They can occur throughout the entire ice period, slightly more often during 

ice formation than during break up, which can be expected. There are fewer cases when the number of 

pixels in the water class exceeds the ice counts. 

The cases, when the classification identifies only water pixel coinciding with LIT, are probably pointing 

towards an inconsistency in the identification of ice in the LIC product.   

 

Figure 26: Timeseries of LIT and LIC counts for pass 54 (example). Consistency is coded by colour: consistent (blue), 
minor inconsistency N_ice>N_water (bluepurple), minor inconsistency N_water>N_ice (violet), inconsistent (red). 
Bottom panel: dots mark dates, when LIT and LIC are available. 

 

Table 19 Summary of occurrence of different kinds of inconsistencies between LIT and LIC. 

Pass No N_ice > N_water N_water>N_ice Only N_water 

45 20 4 10 

178 30 5 6 

254 20 4 1 
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8.3 Identified issues  

For LIT versus LSWT it can be discussed which cases should be considered consistent.  

The relative number of valid pixels inside the area of interest with respect to full coverage could be 

considered as a value of representativity both for LIC and LSWT. Small coverage means low 

representativity and therefore consistency (or inconsistency) becomes more uncertain.  

The LIT versus LIC definitions do not include the uncertainty in LIT yet. 
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Appendix A - List of acronyms 

AATSR Advanced Along Track Scanning Radiometer 

AATSR Advanced Along Track Scanning Radiometer 

AERONET-OC Aerosol Robotic NETwork – Ocean Color 

AMI Active Microwave Instrument 

AMSR-E Advanced Microwave Scanning Radiometer for EOS 

APP Alternating Polarization mode Precision 

ASAR Advanced Synthetic Aperture Radar 

ASLO Association for the Sciences of Limnology and Oceanography 

ATBD Algorithm Theoretical Basis Document 

ATSR Along Track Scanning Radiometer 

AVHRR Advanced very-high-resolution radiometer 

BAMS Bulletin of the American Meteorological Society 

BC Brockman Consult 

C3S Copernicus Climate Change Service 

CCI Climate Change Initiative 

CDR Climate Data Record 

CDOM Coloured Dissolved Organic Matter 

CEDA Centre for Environmental Data Archival 

CEMS Centre for Environmental Monitoring from Space 

CEOS Committee on Earth Observation Satellites 

CGLOPS Copernicus Global Land Operation Service 

CIS Canadian Ice Service 

CLS Collecte Localisation Satellite 

CMEMS Copernicus Marine Environment Monitoring Service 

CMUG Climate Modelling User Group 

CNES Centre national d’études spatiales 

CNR National Research Council of Italy 

CORALS Climate Oriented Record of Altimetry and Sea-Level 

CPD Communication Plan Document 

CR Cardinal Requirement 

CRG Climate Research Group 

CSWG Climate Science Working Group 

CTOH Center for Topographic studies of the Ocean and Hydrosphere 

DOC Dissolved Organic Carbon 

DUE Data User Element 

ECMWF European Centre for Medium-Range Weather Forecasts 

ECV Essential Climate Variable 

ELLS-IAGRL European Large Lakes Symposium-International Association for Great Lakes Research  

ENVISAT Environmental Satellite 

EO Earth Observation 

EOMORES Earth Observation-based Services for Monitoring and Reporting of Ecological Status 

ERS European Remote-Sensing Satellite 

ESA European Space Agency 

ESRIN European Space Research Institute 

ETM+ Enhanced Thematic Mapper Plus 

EU European Union 

EUMETSAT European Organisation for the Exploitation of Meteorological Satellites 

FAQ Frequently Asked Questions 

FCDR Fundamental Climate Data Record 
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FIDUCEO Fidelity and Uncertainty in Climate data records from Earth Observations 

FP7 Seventh Framework Programme 

GAC Global Area Coverage 

GCOS Global Climate Observing System 

GEMS/Water Global Environment Monitoring System for freshwater 

GEO Group on Earth Observations 

GEWEX Global Energy and Water Exchanges 

GloboLakes Global Observatory of Lake Responses to Environmental Change 

GLOPS Copernicus Global Land Service 

GTN-H Global Terrestrial Network – Hydrology 

GTN-L Global Terrestrial Network – Lakes 

H2020 Horizon 2020 

HYDROLARE International Data Centre on Hydrology of Lakes and Reservoirs 

ILEC International Lake Environment Committee 

INFORM Index for Risk Management 

IPCC Intergovernmental Panel on Climate Change 

ISC International Science Council 

ISO International Organization for Standardization 

ISRO Indian Space Research Organisation 

JRC Joint Research Centre 

KPI Key Performance Indicators 

LEGOS Laboratoire d'Etudes en Géophysique et Océanographie Spatiales 

LIC Lake Ice Cover 

LIT Lake Ice Thickness 

LSC Lake Storage Change 

LSWT Lake Surface Water Temperature 

LWE Lake Water Extent 

LWL Lake Water Level 

LWLR Lake Water Leaving Reflectance 

MERIS MEdium Resolution Imaging Spectrometer 

MGDR Merged Geophysical Data Record 

MODIS Moderate Resolution Imaging Spectroradiometer 

MSI MultiSpectral Instrument 

MSS MultiSpectral Scanner 

NASA National Aeronautics and Space Administration 

NERC Natural Environment Research Council 

NetCDF Network Common Data Form 

NOAA National Oceanic and Atmospheric Administration 

NSERC Natural Sciences and Engineering Research Council 

NSIDC National Snow & Ice Data Center 

NTU Nephelometric Turbidity Unit 

NWP Numerical Weather Prediction 

OLCI Ocean and Land Colour Instrument 

OLI Operational Land Imager 

OSTST Ocean Surface Topography Science Team 

PML Plymouth Marine Laboratory 

PP Payment Plan 

PRISMA PRecursore IperSpettrale della Missione Applicativa 

Proba Project for On-Board Autonomy 

QSR Quarterly Status Report 

R Linear Correlation Coefficient 

RA Radar Altimeter 

RMSE Root Mean Square Error 
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SAF Satellite Application Facility 

SAR Synthetic Aperture Radar 

SeaWIFS Sea-viewing Wide Field-of-view Sensor 

SIL International Society of Limnology 

SLSTR Sea and Land Surface Temperature Radiometer 

SoW Statement of Work 

SPONGE SPaceborne Observations to Nourish the GEMS 

SRD System Requirements Document 

SSD System Specification Document 

SST Sea Surface Temperature 

STSE Support To Science Element 

SWOT Surface Water and Ocean Topography 

TAPAS Tools for Assessment and Planning of Aquaculture Sustainability 

TB Brightness Temperature 

TM Thematic Mapper 

TOA Top Of Atmosphere 

TR Technical Requirement 

UNEP United Nations Environment Programme 

UoR University of Reading 

UoS University of Stirling 

US United States 

VIIRS Visible Infrared Imaging Radiometer Suite 

WCRP World Climate Research Program 

WHYCOS World Hydrological Cycle Observing Systems 

WMO World Meteorological Organization 

WP Work Package 
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