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1 Introduction 

The End-to-End ECV Uncertainty Budget (E3UB) identifies and, where possible, characterises each source 

of product uncertainty, quantifying or estimating its effect on the final retrieved quantity. Sources of 

uncertainty that are considered include, where applicable:  

- The input measurements, including radiometric noise and calibration errors in Level-1 data. 

- Retrieval errors and uncertainties, such as errors in auxiliary data (aerosol optical properties, 

spectroscopic errors, modelled atmospheric profiles, approximated surface characteristics, 

assumed parameters), and uncertainties in the retrieval model (e.g., radiative transfer 

approximations or idealised physics). 

- Factors in the retrieval process, such as cloud screening failures or representativity errors such 

as biases in the sampling (e.g., daytime only, clear sky only). 

- Uncertainties introduced during transformations between each processing data level. 

- Sources of uncertainty that may particularly affect the long-term stability of the CDR (e.g., 

changes over time in instruments, their capabilities or calibration, diurnal sampling, the 

effectiveness of cloud clearing, the quality of auxiliary information).  

Where possible, the uncertainties are characterised to express the magnitude of the uncertainty at its 

source, and how these uncertainties propagate into the final retrieved quantity (i.e., their final magnitude). 

This may make use of estimates or correlations of error between separate observations made at different 

points in space and time. Biases in the uncertainty distribution and how these effect the final product, 

are also considered where feasible.   

Where it is not feasible to quantitatively estimate each of these aspects, the characteristics of the 

uncertainty and its likely effect on the final product are described in a qualitative sense. Particular 

attention should be given to the characterisation of biases which might more severely affect a given 

environment or season, in the context of climate studies.  

Finally, the Lakes_cci E3UB includes recommendations to data users, describing how to employ the 

provided prognostic uncertainties in their work (e.g., how to treat spatially correlated uncertainties when 

regridding to different Level-3 resolutions), and advice on conditions leading to low confidence in the data 

product or its uncertainty estimates (e.g., poor cloud clearing over snow and ice surfaces, poor signal 

under conditions of low illumination). Recommendations are also made to internal or external validation 

teams, concerning aspects that may require special attention when the prognostic uncertainty estimates 

are validated. 

It should be noted that, for most of the steps considered above, reference models and data are of crucial 

importance. For a large part of the Lakes ECV, reference data are known to be scarce, particularly 

concerning the length of the observation time series considered. In addition, the available reference data 

rarely consider several of the Lakes ECV product quantities in the same location. Uncertainty estimates 

are therefore established using the approach that is considered most suitable for each of the Lakes ECV 

products, as described in the following sections.  

  



 

 

Lakes_CCI+ - Phase 2           D2.3. End-to-End ECV Uncertainty Budget (E3UB) 

Reference: CCI-LAKES2-0013-E3UB - Issue 2.1.1 – 12/09/2023  
Open/Public/Público © 2019 CLS. All rights reserved. Proprietary and Confidential.  

 

9/53 

 

2 Lake Water level - LWL 

 

2.1 Uncertainty characteristics   

The uncertainties provided with the LWL product result from the standard deviation of the along track 

altimetry (after including all observation corrections) of all measurements used to calculate the median 

value for a pass over a lake.  

For reference, the calculation of LWL using satellite altimetry follows: 

LWL= Alt-Rcorr-TE                       [2.1] 

Where LWL is considered with respect to a geoid through Rcorr, Alt is the altitude of the satellite above an 

ellipsoid and TE is the sum of different corrections in order to account for atmospheric refraction 

(propagation in the ionosphere and the troposphere), tidal effects (solid Earth, lake and polar), and geoid 

height above the ellipsoid. Detailed information and full discussion of the computation of LWL can be 

found in Cretaux et al. (2009).  

Each term of the expression of LWL has its own contribution to the final error budget. These sources of 

uncertainty are introduced in detail in the next section.  

To quantify the end-to-end uncertainty budget, both new field work and existing data sources are used. 

Previous findings are reported in Cretaux et al. (2009, 2011, 2013, 2018). 

To determine the impact of some of the altimetry data processing models in different configurations, 

other studies based on comparison with in-situ data have been performed (Ričko et al., 2012, Arsen et 

al., 2015). This work is continued with new in-situ data sets collected during Lakes_cci, through external 

collaborations. 

Based on the quality assessments done over the last years a quantification of the full error budget is now 

available for different combinations of lakes and altimeters. 

 

2.2 Sources of uncertainty  

The sources of uncertainty of LWL product vary and depend on several factors. Total uncertainty is 

calculated from the standard deviation of the distribution of measurements of water height by the satellite 

altimeter. The different factors affecting this calculation fall into three categories:  

Detector noise: For a classic altimeter, the detector noise is sub centimetre and not the main source of 

uncertainty for LWL.   

Morphology of the lake and its surrounding environment: Radar altimeter measurements involve sending 

an electromagnetic pulse to the satellite nadir and measuring the propagation time to and from the 

emitted wave and its echo on the illuminated surface. A received echo is not identical to the initial pulse. 

Despite how narrow the initial pulse can be, the echo is spread over time by its interaction with the 

reflecting surface. In practice, the echo spans multiple antenna reception intervals – the “distance doors” 

– (typically a hundred doors of 2 to 3 nanoseconds each, a length of 30 to 50 cm per door) and the 

technique of locating the correct time interval to give the distance measurement (range) in this period is 

called the tracking (if the operation is performed on board) or retracking (if the operation is done on the 
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ground through post-processing techniques). Tracking and retracking are not directly performed on 

echoes, which are too noisy, but on the echo accumulations, called the waveforms. 

As the first altimetry missions were dedicated to oceanic studies, the algorithms developed to address 

the waveforms were adjusted to the shape of echoes that returned from the ocean surface. These 

algorithms were based on the fact that the reflective surface is sufficiently isotropic and continuous. If we 

accumulate echoes over a longer time span than the decorrelation time of spatial structures from the 

reflecting surface of the same order of magnitude as the pulse wavelength (2.2 cm for a Ku-band of 13.6 

GHz), the waveform could be approximated by a theoretical form from which time A/R can be analytically 

determined. This theorical form is called the Brown model. 

The time for the echo to bounce back to the altimeter can be obtained by finding the best fit between the 

waveform and the analytical expression. Once established, and if the dating provides the best fit, it is 

found halfway up the rising edge. In the specific case of continental surfaces, the received echo is very 

different from the paradigm presented above. The shape of the echo becomes extremely variable (Figure 

1: ) depending on the power backscattered by the water plane environment, in the case small or narrow 

lakes.  

 

Figure 1: example of typical waveforms, from left to right; specular, ocean like (Brown model), contaminated, and examples of 

noisy waveforms. 

With lakes it is no longer possible to find a single analytical expression that can determine a specific A/R 

time for all waveforms. A key milestone was reached with the ESA Envisat mission, where it was decided 

to break away from the principle of the single range estimate and offer several range estimates made by 

very different algorithms for each measurement within its Geophysical Data Records (GDRs) user 

products.  

The morphology of the lake and surrounding terrain affect the final uncertainty in different ways: for large 

lakes (>100s km2) with a long track coverage (> 30-40 km) it is possible to strictly select the range of 

measurements that are located far enough from the coastline. Because the selected radar echoes are 

fully over water, the final uncertainty is in the centimetre range. If, however, the lake is narrow or when 

the satellite track crosses the lake on an edge or within a short distance from shore, the echoes no longer 

follow the Brown model, and we need to use the released retracking models. If a large proportion of 

measurements is affected by this issue, their dispersion is much increased with respect to ideal cases, 

and the uncertainty may reach several decimetres. In practice, the classical OCOG (namely ICE-1) is used 

for the LWL product since it has been evaluated as the best algorithm for such reflecting surfaces. The 

same problem arises when specular or quasi specular echoes are registered on lakes with a very calm 

surface, since the Brown model assumes that the reflecting surface has some small waves rather than 

specular echoes. For this reason, it is problematic to use Topex / Poseidon or Jason-1 satellite over lakes 

in such cases because alternative retracking models (like OCOG) are not released in the GDRs. Using 
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retracking models (with Envisat, Jason-3, Saral or Sentinel-3A) does not solve all problems with complex 

footprints and in the worst cases, the resulting uncertainty may reach several decimetres. 

It is important to note that the Ka band (36 GHz) with the Saral/AltiKa mission has reduced the footprint 

and consequently also decreased the uncertainty for small lakes. It has been shown in Arsen et al. (2015) 

that accuracy of LWL over small lakes in the Andean chains (with respect to Envisat for the same lakes) 

improved by a factor of 5 to 10 depending on the lake.  

With Sentinel-3A another technical improvement reduces, in a potentially significant manner, the final 

uncertainty in some specific geographical contexts. Sentinel-3A operates in SAR mode which brings 

several advantages for small water bodies. The footprint is reduced by a factor ranging from 10 to 50 

compared to Low Resolution Mode (LRM) used with other altimeters. This allows much better selection 

of the reflecting point and drastically reduces the pollution from the ground when the satellite track 

approaches the lake shoreline. It is however valid only when the orbital track is almost perpendicular to 

the shoreline. 

Geophysical corrections: Calculating the range is based on the propagation velocity of the 

electromagnetic wave, i.e., the speed of light in a vacuum. In practice, as the radar pulse passes through 

the atmosphere, the actual propagation speed is below this limit value. The impact on the estimated 

range is an extension of around 2.5 m, mainly linked to the density of the air. Three separate corrections 

are applied: 

• dry tropospheric correction 

• wet tropospheric correction 

• ionospheric correction  

A fourth source of uncertainty to consider is due to reflection on the surface of the water. A correction of 

the surface state would consider that the height of the facets that reflect the radar pulse may be different 

from the average water height in the radar beam footprint, and it is also to correct for the fact that the 

shape of waves changes the height distribution in the surface illuminated by the radar. Whereas it is 

described for sea state, the effect on lakes is not well known, not modelled and assumed to be relatively 

weak. In extreme cases, however, it may reach several centimetres and constitutes a source of potential 

uncertainty. To date this has not been considered for inland waters.  

Among the above three corrections, the dry tropospheric and the ionospheric ones are well modelled over 

continental water (using global gridded data sets) and the resulting errors are below the centimetre over 

lakes: see Cretaux et al. (2009). The third correction factor (wet tropospheric) is the most problematic 

and causes the main measurement uncertainty. 

Wet tropospheric correction is related to the water vapour contained in the air column that the 

electromagnetic wave intersects. This correction can be estimated in two ways: either with an onboard 

bi- or tri-frequency radiometer or from a global meteorological model, as used for dry tropospheric 

correction. Radiometers measure the instantaneous brightness temperatures at the nadir, a quantity 

dependent on the atmospheric water vapor content. This measurement has the obvious advantage of 

time coincidence with the radar altimeter measurements. However, radiometers do not operate properly 

over the continental areas because the measurement is polluted by the inhomogeneity of the soil 

emissivity except for very large lakes. To avoid this problem, a WTC based on the ECMWF re-analysis is 

used. Over lakes, however, the use of local GPS precise positioning near Lake Issykkul in Central Asia 

(Cretaux et al. 2009, 2011, 2013, 2018; Quartly et al., 2020) has shown that the estimated error is in 

the order of a few centimetres. 

Other corrections are applied to the final calculation of LWL, which do not contribute significant (i.e., they 

are sub-centimetre) sources of uncertainty. These include lake tides, Earth tides and the polar tide, and 

all are delivered within the GDRs using geophysical models. 
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2.3 End-to-end Uncertainty budget 

It is currently not feasible to establish a generic error budget for LWL calculation using satellite altimetry 

because the sources of errors are numerous and they vary strongly from one lake to another, and between 

altimeters. We can, however, report generic estimates. 

For large lakes and for whichever satellite mission is considered, and in normal lake state conditions (no 

specular echoes) the main source of uncertainty comes from the wet tropospheric correction, and 

depending on the regions it varies from 2-3 cm. The combination of altimeter noise and geophysical 

corrections then amounts to 8-10 centimetres (Ričko et al., 2012). 

For small and narrow lakes, uncertainty varies between 10 centimetres and 1 meter (above which the 

data are discarded). In such cases, the uncertainty depends first on all form of the echoes (waveform) 

and the ability of the retracking to analytically interpret it in terms of range between the satellite and the 

lake surface. Under very poor conditions (very narrow lakes for example) the retracking used (OCOG) may 

be not robust enough to retrieve the range without large uncertainty. In such cases, another factor 

influencing final uncertainty is the altimeter itself: with Saral/AltiKa and with Sentinel-3A, the impact of 

lake morphology on the result is reduced since the footprint is also drastically reduced. With LRM 

altimeters, the impact is the highest. 

With SAR mode, the uncertainty on LWL over small lakes can be significantly reduced. Intrinsically the 

measurement is more precise, and moreover new approach in water height extraction from the waveform 

can be developed. This is what has been done at CNES in coordination with LEGOS where a new 

methodology (call LPP) has been recently developed to determine the LWL of lakes using SAR 

measurements from Sentinel-3 satellites. It is a physical retracker based on simulation of waveforms over 

the lake. For each satellite pass over the lake, numerical simulations of the SAR altimetry waveforms over 

the lake are the core process of the LPP. The simulations are built using a lake contour. All satellite and 

instrument characteristics are accounted for: radar antenna diagram, radar point target response, tracker 

information, satellite track position and altitude, a priori WSH. 

The novelty of this approach is that the retracking algorithm considers the geometry and the roughness 

of the surface of each lake. Physical retrackers are essential to model properly the radar signal. With this 

method, we can reach RMSE below 10cm in SAR mode in very complex situations. We have applied this 

processing chain (called LPP) on two set of lakes in two different regions: lakes in Occitanie (South of 

France) and lakes in Switzerland for which in-situ reference data are available. The size of these lakes 

varies from hundreds of metres to several kilometres. The surrounding topography is differing between 

sites with some in mountainous areas and others in open areas. Figure 2 summarises the accuracy 

obtained with the LPP, and OCOG. It shows that, even for narrow lakes in Occitanie, the LPP method yields 

LWL at centimetre-accuracy, while using OCOG the results remain acceptable with decimetre-accuracy. 

For Lake St Geraud, which is narrow (200 metres wide), LPP still yields results of around 14 cm accuracy 

while OCOG did not yield accurate LWL. For the Swiss lakes, the complexity of the scene is due to the 

surrounding relief, but the comparison between LWL resulting from LPP, OCOG and in-situ measurements 

still shows that the new methodology provides accuracy in the order of centimetres while it was in the 

order of decimetre using OCOG. 
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Figure 2: summary of RMS differences between in-situ measurements and WSH calculated using LPP and OCOG retracker, for 

lakes in Occitanie and Swizterland.  

 

2.4 Recommendations 

2.4.1 To users 

Lake Water Level uncertainty, expressed in cm, provides information on the quality of the Lake water level 

measurements. Based on the uncertainty values, the quality flag of the lake water level values can be 

classified in three categories: 

• Good quality: when the uncertainty is lower than 10 cm 

• Medium quality: for LWL with uncertainty between 10 and 30 cm 

• Low quality: when the uncertainty is greater than 30 cm 

To ensure appropriate use of the data, it is highly recommended that users either apply one of the quality 

flags to suit their needs or include the uncertainty estimates in their analysis or reporting.  

2.4.2 To the validation team 

The lake water level is provided with respect to the geoid. For validation purposes, it is important to keep 

in mind that data coming for external datasets can be referenced to different geoid models which results 

in a bias between timeseries in the comparison process. Therefore, comparison of water level variation 

is generally more appropriate to assess product quality.  
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3 Lake water extent -LWE 

 

3.1 Uncertainty characteristics   

Optical satellite images are used in combination with LWL to produce LWE hypsometry curves. The LWE 

product is therefore the result of propagation of uncertainties to the Level-2 processed LWL product 

(section 2) and the LWE techniques described in this section. 

3.2 Sources of uncertainty  

There are numerous sources of uncertainty when deriving water surfaces from images acquired by optical 
sensors. These can be related to the following effects: 

− Observation effects 

− Algorithm effects (external sources) 

− Training samples selection 

− Calibration – detector effects 

− Misclassification effects 

− Adjacency or proximity effects 

Observation effects: Optical remote sensing of inland and marine waters depends on the quality of the 

retrieval of the water-leaving radiance from top-of-atmosphere measurements. A notable influence on the 

retrieval is specular reflection of sunlight on the air-water interface (sun glint) in the direction of the 

satellite field of view. The magnitude of the effect depends on the satellite (viewing angles, pixel size) and 

its orbit with respect to each lake. 

For medium resolution satellites (MODIS, MERIS, OLCI with pixel sizes of 300 m to 1km) the sun glint can 

be modelled from the geometry of observation (angle of sight, solar angle and azimuth) and wind speed 

(see Cox & Munk, 1954). It is then possible to attempt correction for sun glint or mask the affected pixel. 

For high or very high-resolution satellites (e.g., sensors on Landsat, Sentinel-2, Pleiades) the spatial 

resolution (< 30m) no longer allows modelling the sun glint. This effect must then be estimated from the 

observation itself, in which case Short Wave Infra-Red (SWIR) bands (> 1.5 μm) are particularly useful to 

delineate glint. The viewing geometry of Sentinel-2 satellites with a near-nadir view makes it particularly 

vulnerable to sun glint contamination (Harmel et al. 2017). Examples are shown in Figure 3.  

The SWIR bands of Sentinel-2 MSI and Landsat-8/OLI can also alleviate limitations associated with using 

the Near Infra-red (NIR) part of the spectrum. First, light absorption by water is more than an order of 

magnitude more efficient in the SWIR than in the NIR thus allowing better separation of land and water. 

Second, the atmosphere is more transparent in the SWIR thus showing less diffuse transmission paths 

and, consequently, lower contribution of aerosols and air molecules.   

Methods to remove or limit the sun glint bias require external input such as aerosol optical thickness, 

amount of absorbing gas, sea surface pressure and target altitude, which can be populated from the 

AERONET photometer network or the CAMS dataset (Harmel et al. 2017). 



 

 

Lakes_CCI+ - Phase 2           D2.3. End-to-End ECV Uncertainty Budget (E3UB) 

Reference: CCI-LAKES2-0013-E3UB - Issue 2.1.1 – 12/09/2023  
Open/Public/Público © 2019 CLS. All rights reserved. Proprietary and Confidential.  

 

16/53 

 

 

Figure 3: Sun glinted Sentinel-2 MSI image acquired on 14 July 2017 over Namtso Lake (PR China) and Kisale Lake (Congo) 

on 16/03/2020 

Algorithm effects (external sources): To compute water extent over a lake, a reference area is required to 

limit the analysis to a spatial buffer around the target area. When working with medium resolution satellite 

imagery, it may be suitable to adopt these from the ESA CCI Land Cover database, delineating the 

maximum water extent observed over a recent ten-year period. However, this does not always provide 

sufficient detail when looking at higher resolution imagery (Figure 4).  

 

Figure 4: Reference envelope over Colhue Lake (Argentina).  Yellow and orange (buffered) envelopes are derived from the ESA 

CCI Land Cover database and exclude the northern part of the lake. The red contour is based on high resolution satellite 

imagery. 

In some cases, the reference polygons only include part of the lake system. An example is given in Figure 

5 for Sasykkol Lake (Kazakhstan) which is a morphologically complex system. Here, two lakes (Alakol and 

Sasykkol) are separated by a wetlands complex. A large part of the water surface increase is located 

within this complex as well as on the North-Western extent. In the medium resolution-based reference 
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database, these surrounding wetlands complex are not included. The same behaviour is observed for 

Tonle Sap lake, related to the difficulty to determine the extent of the lake with regard to the open water 

areas versus surrounding wetlands (Figure 6).  

 

Figure 5: Reference envelopes over Sasykol lake (Kazakhstan) 

   

Figure 6: Difficulties to positioning lake limits in cases of complex lake such as Tonle Sap (Cambodia) where open water 

bodies are mixed with flooded wetlands or on case of Honk lake (China) with inundated paddies fields and wetlands.   

Training sample selection: There are many ways to select training samples for classification including 

manual/visual effort or automated processes when time series are exploited. In either case, sample 

selection can introduce bias: local validity of input databases; selection criteria for training samples, and 

localized observation conditions.  

A first effect to consider concerns the sun glint. Using a conventional water index (MNDWI, Xu 2006), sun 

glint reduces the detected water surface area. Other common water index like the AWEI, Feyisa et al. 

2014, can be not affected by the sun glint. 

Another example to illustrate the potential influence/bias induced by input data is given in Figure 7, 

showing the Global Surface Water product (GSW, Pekel et al. 2016) used to define a training set. Where 

the GSW product yields a 0% occurrence level, water may in fact be (albeit rarely) present. Some pixels 

associated with dry areas can even be found inside water bodies. This effect is likely caused by the long 

observation period underlying the GSW data set, whereas ephemeral water bodies could have very short 
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periods containing water. The opposite effect, where the long-term dataset suggests water, but this is not 

found in current time-series, is also observed. Further screening of the training data set is then essential.  

 

Figure 7: Lake Colhue (Argentina ) shows water despite pixels having 0% water occurrence in the GSW data set.  

Calibration – detector effects: From time to time, Sentinel-2 MSI imagery may contain sensor or 

calibration anomalies, which then affect any use of the imagery including water detection (Figure 8). 

These artefacts are rare for Sentinel-2 sensors. 

 

 

Figure 8: An example of a rare case of radiometric anomaly observed in Sentinel-2 MSI imagery of Lake Chilwa, 22 Nov 2018. 

For the Landsat sensors, particularly Landsat 7, there are Scan Line errors due to a problem in forward 

motion of the satellite (Figure 9). 
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Figure 9: Detector errors in Landsat 7 acquired on the 2003-08-09 over Bosten lake 

In some cases, the satellite coverage of a lake is incomplete (Figure 10) and the image is rejected, leaving 

a potential gap in the time series.   

 

Figure 10: Incomplete lake coverage, case of the lake Naivaska, in Kenya, Landsat image acquired 23 January 2010. 

Corrections applied to the products at various processing levels are particularly important with shallow 

water surrounded by wet mud banks. Two levels of processing of Sentinel-2 imagery are accessible for 

the LWE procedures: 

- Level 1C, providing per-pixel radiometric measurements as Top-of-Atmosphere reflectance. 

- Level 2A, atmospherically corrected Surface Reflectance (SR) integrating the atmospheric 

correction of Sentinel-2 MSI images, which includes correction for scattering by air molecules 

(Rayleigh scattering), absorbing and scattering effects of atmospheric gases, in particular ozone, 

oxygen and water vapour, and absorption and scattering due to aerosol particles. 

In the past, Level 2A images were not produced systematically for all acquired Sentinel-2 tiles, so tests 

were carried out to quantify the effect induced by lack of atmospheric corrections on image processing, 

and the particular case of shallow water extraction. These tests were done over lakes of the Grand Est 

region in France (lac d’Orient and lac du Parc des Pourceaux), which have significant intra-annual water 

surface dynamics. At low water level period, the open water surfaces are surrounded by sandy/muddy 

wet banks. When exploiting Level 1C, the wet muddy banks are integrated with open water, whereas using 

Level 2A, the extracted surfaces correspond to open water, and fit well with a reference database (Figure 

11).   
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Figure 11: Evaluation of the effect of exploiting LC1  versus LC2 levels products on water recognition : (ALCD reference 

database provided by Pena Luque et al (2021)).   

Misclassification effects (e.g. cloud, land, water, subpixel variation) and adjacency or proximity effects: 

Confusion and commission errors occur, for example between ice and water or water and snow. The effect 

is obvious in the below example of Lake Namtso on the Tibetan plain (Figure 12). Better results were 

obtained over the Kasba and Baral lakes (Figure 13). 

 

Figure 12: Confusion/commission between Ice and water when exploiting a KMeans approach rather than SVM at Namtso 

lake (PR China) 
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Figure 13: Potential limitations in water recognition purposes related to the ice coverage, over Kasba lake (Canada) and Baral 

lake (China), observed on Sentinel-2 images acquired respectively on 22-05-2022 and 4-11-2021). 

Model parametrization: As presented in the ATBD, the water extraction is done using the ExtractEO 

processing chain which takes the slope derived from DEM (Maxant et al., 2022) into consideration. Slope 

and hillshade thresholds derived from HR DEMs are applied to refine the water extraction during post-

processing) stages, to limit the effect commission related of the shadows due to the slope. The threshold 

values have to be adjusted to limit blurring effects leading to water omission (Figure 14).    

  

  

 

Figure 14: Evaluation of the hillshade values of water recognition and impact on score’s values (ALCD reference database 

from Pena Luque et al (2021).   

Lyons et al. (2013) also identified that increasing lake size and a less complex morphology decreases 

classification error in terms of observed lake area (relative to actual lake size), as shown in Figure 15. 
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Figure 15: Scatter plots of absolute error in estimated lake area as a function of ‘actual’ lake area (based on DGPS shoreline 

measurements). Lines represent power-law fits to the respective data points. 

3.3 End-to-end Uncertainty budget 

The LWE measurement uncertainty cannot be determined at sufficient scale from in-situ observations. 

Instead, statistical analysis of the calculated hypsometry curves using each of the (LWL/LWE) vectors 

that were measured, is used to determine confidence between methods.   

We systematically determine the precision of each time series of LWE calculating the RMSE of the 

difference between LWE inferred from the polynomial function of the hypsometry of the lake, and LWE 

directly measured by the satellite image, over the whole dataset of images used to calculate the 

hypsometry coefficient. We have observed that for all lakes where this statistical analysis was done (tens 

of targets, varying in size) the RMSE always remains between 1 and 10% of average extent of the lake, 

allowing to compute precise water extent variations (see Figure 16 and Figure 17). 

The evaluation of LWE thematic ECV based on the hypsometry curve is a reliable method to examine the 

relative quality of the LWE calculated from satellite imagery. It does not resolve all inconsistencies, but it 

does validate good solutions and allows for the uncertainty of the calculation to be determined. 

 

Figure 16:Hypsometric accuracy on Lake Bosten. Red curve represent the theorical hypsometry determined by least square 

adjustment of a second order polynomial on the datasets (LWL/LWE). With a 10.3 km2 of RMSE this represents approximately 

1% of total area of the lake.  
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Figure 17: Hypsometric accuracy for Lake Kariba in Africa where the RMSE (37km2) is less than 1% of average extent of 5000 

km2.   

3.4 Recommendations 

3.4.1 To users 

Lake Water Extent uncertainty, expressed in km2, provides information on the quality of the Lake water 

extent measurements. This surface area expressed in the RMSE must be brought down to the overall 

surface area of the body in water, which is then obtained as a percentage.  Based on these recomputed 

uncertainty values, the quality flag of the lake water extent values can be classified in three categories: 

• Good quality: when the uncertainty is lower than 5 % 

• Medium quality: for LWL with uncertainty between 5 to 10% 

• Low quality: when the uncertainty is greater than 10% 

To ensure appropriate use of the data, it is highly recommended that users either apply one of the quality 

flags to suit their needs or include the uncertainty estimates in their analysis or reporting. 

3.4.2 To the validation team 

 Validating LWE is not an easy task. Many elements/parameters can disrupt the LWE/LWL relationships 

used to systematically generate LWE.   Similarly, there is no totally reliable database. Firstly, unlike other 

LWEs, it is not possible to collect data in the field, as can be done for  Lake temperature (LWT)  or  Lake 

Water Level ( LWL) through field measurements or a boy or at gauge stations. Validation can often only 

be carried out by visual inspection of the resulting hypsometry curve and the calculation of the RMSE of 

the difference between theorical area (inferred from the hypsometry polynomial adjusted with the 

(LWL/LWE) vector) and the lake water area used for the calculation of the polynomial’s coefficient. We 

may also use Higher resolution images (like the ones from Pleiades) but this can be done on very limited 

number of cases.    
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4 Lake surface water temperature – LSWT 

 

4.1 Uncertainty characteristics   

4.1.1 Basis of LSWT uncertainty characterisation 

An evaluation of uncertainty in LSWT products is given per datum, and is obtained by calculation of 

propagated, retrieval and sampling uncertainties.  

The propagated part addresses the amplification of error in the satellite observations (the brightness 

temperatures, BTs) through the retrieval process, using standard equations for the type of retrieval used 

(optimal estimation, see below). 

The retrieval uncertainty expresses the range of possible LSWTs compatible with the observations even 

if they were error free, since the intervening atmosphere produces some ambiguity in the relationship 

between the surface LSWT and the top of atmosphere satellite BTs. Another component of retrieval 

uncertainty is the influence of the prior value used in the optimal estimate, and error in which also 

(slightly) affects the result. The retrieval uncertainty component is also expressed using standard optimal 

estimation equations.  

Sampling uncertainty at processing Level 3 (gridded data) arises is only part of the lake within the grid 

cell is observable. This is well parameterised as a function of the fraction and properties of the grid cell 

that is observable. 

The uncertainty evaluation includes all sources of uncertainty (sensor errors, modelling errors, prior 

errors, retrieval indeterminacy and L3 sampling) expected for a valid retrieval of LSWT.  

4.1.2 Limitations of LSWT uncertainty characterisation 

The standard equation for the uncertainty evaluation (and the retrieval) uses error covariance parameters 

that are, for LSWT, still relatively poorly known (this is quite common in optimal estimation approaches). 

Therefore, the uncertainty evaluation is still expected to improve in realism with further research and 

development. 

An aspect of uncertainty that is “unexpected” (in the sense of not being accounted for in the retrieval 

process) and not included in the quoted LSWT uncertainty is related to any errors that may arise in cloud 

detection / water-surface identification. This is addressed via a quality indicator approach, whereby 

quality level (QL) 5 means high confidence that the retrieval assumptions are fully met and that the 

uncertainty provided is valid. Lower QL is attributed where circumstances suggest that retrieval 

assumptions are less closely met and the uncertainty evaluation may be less valid (usually 

underestimated). For climate studies, use of QL 4 and 5 is recommended, and for these data the 

uncertainty evaluations are credible. 

Further aspects of LSWT uncertainty depend on the usage of the data. Where, for example, a user wishes 

to form a wider spatio-temporal average of LSWT, there is sampling uncertainty arising from the fact that 

the space-time box for the average is not fully sampled by satellite data (which may have cloud-related 

gaps and are obtained only when a satellite passes overhead). This is aspect goes beyond what can be 

provided in a product with per datum uncertainty, since it is usage dependent.  
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4.2 Sources of uncertainty  

The sources of uncertainty in any retrieval are the effects that cause errors in either the observations 

used or in other parameters that influence the retrieval result. 

Detector noise: Brightness temperatures for the sensors used for LSWT are noisy at levels between about 

0.03 and 0.12 K. The combination of BTs into an LSWT estimate generally amplifies the noise by a factor 

of between 2 and 4 (for single-view retrievals as used here). In the LSWT CCI processing, sensor-specific 

noise estimates are used, and the standard equations evaluate the noise amplification. 

Forward model errors: The fast radiative transfer model RTTOV is used within the optimal estimation 

framework. Errors in simulation of BTs also propagate to LSWT. These errors are not noise in the retrieval 

of LSWT from a given overpass because they are largely in common between lake pixels nearby to each 

other, and therefore the effect is locally systematic. The magnitude of RTTOV uncertainty is relatively 

poorly known, but appears to be comparable to the BT noise. The combined effect of detector and forward 

model errors is represented by an error covariance matrix in the optimal estimation framework.  

The effects of instrument calibration and forward model errors are indistinguishable in the uncertainty 

budget of optimal estimation: the simulation should ideally represent the instrument (with its calibration 

characteristics) and therefore we don't distinguish forward model error and calibration error in practice 

(when doing this sort of retrieval).  

The combined LSWT uncertainty from observation noise and forward model errors is typically of order 0.3 

K.  

Prior error: Optimal estimation retrieval starts from a prior estimate of the state (here, of the LSWT and 

atmospheric water vapour) which is then updated using the new observations (here, BTs). The prior 

estimate is subject to uncertainty (otherwise, we would not need to do the retrieval) and therefore in a 

given instance there is a prior error that is unknown. Because of the indeterminacy of the retrieval (an 

intrinsic feature of inverse problems) some of the prior error persists in the retrieved LSWT. For LSWT, 

the prior uncertainty is around 1 K and typically 10% to 20% of any prior error persists. (The degree of 

propagation of prior uncertainty can be quantified in an optimal estimation framework using standard 

theory.) Thus, the uncertainty associated with this component is of order 0.1 K to 0.2 K. If the prior is 

biased, this effect will be systematic on the same spatio-temporal scales as the prior errors. 

Retrieval error: The optimal estimation framework uses the error covariance information supplied to the 

retrieval along with the Jacobians (sensitivities) of the observations to LSWT (calculated by RTTOV) to 

evaluate the degree to which the retrieval result is uncertain, using standard equations (that also account 

for all the elements described above).  

Sampling error: All of the above sources relate to single pixel retrieval. Sampling errors arise when 

combining the swath pixels to gridded products (level 3). Not all cells are fully observed because of swath 

edges and intervening clouds that obscure the lake in the infrared. However, users interpret gridded data 

as representing the average across the entire cell. Therefore, when the cell is not fully observed, there is 

a sampling error which is equal to the difference the unobserved parts of the cell would make to the cell 

mean if they could be observed. This is generally considered to be a random effect (although biased 

circumstances can be imagined). Sampling uncertainty is greater when less of the cell is observed, and 

when the LSWT in the cell is more variable. The parameterisation of this in terms of the cell fraction 

observed and the variability observed follows that proposed by Bulgin et al (2016) for sea surface 

temperature. 

Somewhat balancing the “extra” sampling uncertainty is the effect of averaging down the noise when 

combining several LSWTs into a cell mean (the familiar “1⁄√n” uncertainty reduction).  

Classification error: The uncertainty model is complete and valid for situations where the retrieval 

assumptions are met: cloud-free low-aerosol skies over ice-free lake surfaces. Where residual cloud or 
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heavy aerosol is present, the retrieval may be affected to a degree not captured by the uncertainty 

evaluation. Likewise, if part of the surface is not water but is ice, land or flotsam, the obtained 

temperature interpreted as LSWT will have an additional error.  

As is apparent from the example in Figure 18 below, clouds may have fuzzy edges that make some degree 

of residual cloud contamination likely in some pixels used for LSWT. 

 

Figure 18: (Left) False colour composite image of reflectance at 1600 nm (R), 870 nm (G) and 670 nm (B). (Middle) the co-

incident MERIS cloud indicator. (Right) The water detection score: QL 5 retrievals are made where this score reaches 4 or 

more. All panels for lake Michigan in USA on the 15-Feb-2011. 

There being no known means to evaluate classification uncertainty on a per datum basis, this aspect is 

handled via quality levels, as mentioned above. 

 

4.3 End to end Uncertainty budget 

4.3.1  Uncertainties estimation methodology in LSWT 

Optimal Estimation retrieval has been used for LSWT for all the sensors since it is based on physics, and 

can be applied where no in-situ data for retrieval tuning are available. This gives good reason to expect 

stable performance across domains in time and space. 

For single-view instruments, the LSWT is retrieved using an optimal estimation (OE) scheme (MacCallum 

and Merchant, 2012):  

𝑥 = 𝑥𝑎 + 𝐺(𝑦 − 𝐹(𝑥𝑎))        [4.1] 

𝐺 = (𝐾𝑇𝑆𝜀
−1𝐾 + 𝑆𝑎

−1)−1𝐾𝑇𝑆𝜀
−1       [4.2] 

The retrieved state is the prior state plus an increment of  

𝐺(𝑦 − 𝐹(𝑥𝑎))          [4.3] 

F is the forward model and the matrix K expresses how the observations change for departures from the 

prior state, i.e., it is a matrix where a given row contains the partial derivatives of the BT in a particular 

channel with respect to each element of the state vector in turn. The partial derivatives are the tangent 
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linear outputs from the forward model. Sε is the error covariance of the differences between the model 

and observed BTs. This error covariance matrix is the sum of the radiometric error covariance in the 

observations (So) and estimated error covariance of the forward model (Sm). Sa is the error covariance 

matrix for the prior state variables. 

It has been shown that a reduced state vector, z(x) = [
x
w
] where x is the LSWT and w the total column 

water vapour can be used in the retrieval instead of the full prior state vector xa. However, the full prior 

state vector is used in the forward model (see MacCallum and Merchant 2012). 

Given the above, in LSWT processing the uncertainty due to noise (assumed uncorrelated between pixels) 

and due to uncertainty from retrieval-related factors (assumed correlated on synoptic scales) are 

estimated by: 

 √GSoG
T          [4.4] 

and: 

 √GSmG
T          [4.5] 

These equations are not a complete decomposition of uncertainty estimation using an optimal estimation 

framework, and will be refined in a future version. 

To determine the uncertainty of the gridded product, the components are combined according to their 

correlation structure. Over a grid cell, the uncertainty from propagated noise is treated as random 

between pixels, the uncertainty from retrieval-related factors is assumed to be systematic across all pixels 

and the sampling uncertainty is combined as a parameterised value obtained at the whole-cell level. 

The total uncertainty is available for users in the gridded product. 

 

4.3.2 Uncertainty budget in LSWT 

The evaluated uncertainty for a L3 LSWT is typically in the range 0.4 to 0.7 K. (All statements here are 

made on the basis of LSWT v4.0.) Two example uncertainty fields are shown in Figure 19. 
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Figure 19 Uncertainty fields for L3 product for (top) Swedish lakes (the largest being Vanern and Vattern) and (lower) east 

African lakes (the largest being Lake Victoria). 

As Figure 19 shows, uncertainty tends to increase towards lake edges and may be greater in cells where 

cloud has partly obscured the lake surface. 
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Figure 20 shows a validation of satellite LSWT against in-situ measurements of the sort that is routinely 

done for the 56 lakes for which (so far) intensive personal collection efforts have yielded usable data. The 

satellite data are coloured by QL (1 to 5, of which 4 & 5 are recommended for use), and uncertainty bars 

are plotted (not always visible beyond the circles). 

 

Figure 20 Satellite observations (dots), in-situ matches (white dots), in-situ measurements (black line), satellite minus in-situ 

temperature difference for quality levels 3,4,5 (green line) and climatology (golden line) for lake Erken in Sweden in 2008. 

The LSWT variability is, for a given time of year, shown by the width of the climatological band 

(representing 1 standard deviation of variability around the climatological mean), and is about 2 K. 

Clearly, the satellite data tracks the LSWT fluctuations of this specific year (2008) around the 

climatological expectation, which are also seen in in-situ data. The “signal to noise”, using the variability 

as the measure of signal, is thus ~ 2 K / 0.4 K = 5. Using the climatological range to represent the signal 

would give an SNR an order of magnitude larger. 

Using all the matches of the sort across all the lakes (sample of opportunity, not geophysically 

representative), the statistics of satellite-minus-in-situ difference are as in Table 1 . 

Table 1 Statistics of satellite minus in-situ LSWT per quality level. 

QL N Median/K Standard 

Deviation/K 

Robust Standard 

Deviation/K 

5 29819 -0.13 0.91 0.52 

4 11361 -0.28 1.18 0.79 

3 12618 -0.25 1.39 0.95 

 

Because of the water-temperature skin effect, the expected offset between these datasets is of order –

0.17 K, and therefore we see that the QL 5 relative mean difference is well within an accuracy target of 

0.1 K. For QL 5, the robust standard deviation is compatible with a closed uncertainty budget, assuming 

that in-situ uncertainty is of order 0.2 K (a number based on experience of ocean-going buoys). The higher 

standard deviation indicates the presence of a minority of larger outliers (I.e., the distribution is not 

normal, but has heavy tails). Thus, for the majority of QL 5 data, the evaluated uncertainty appears to be 
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of the right magnitude; the reasons for the heavy tails in the distribution, where discrepancies are larger 

than expected, can include in-situ data where 0.2 K is overly optimistic as an estimate of uncertainty. The 

QL system is working as expected, as shown by the fact that the SD and RSD increase in size for the lower 

quality levels, for which the evaluated uncertainty is likely to be underestimated. 

Overall, despite the limitations pointed out earlier, the uncertainty budget used and applied to the LSWT 

products is quantitatively realistic for QL 5 data, and is useful in discriminating more and less certainty 

LSWT data points. 

 

4.4 Recommendations 

4.4.1 To users 

We strongly suggest to use the LSWT together with the uncertainty and the quality levels which are 

provided for each of the pixels. LSWT of quality levels 4 and 5 are recommended to be used especially in 

climate related applications.  

4.4.2 To the validation team 

It is recommended to carry out the validation of the LSWT and the LSWT uncertainty taking into account 

the provided quality levels. For the validation of uncertainty, it is very important to have knowledge of the 

uncertainty of the in-situ measurements, which is most of the time not known. 
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5 Lake water leaving reflectance – LWLR 

 

5.1 Uncertainty characteristics   

The uncertainty characterization of the LWLR products, including water-leaving reflectance, chlorophyll-a 

and turbidity, is based solely on end-to-end validation of the satellite product against in-situ matchups 

with satellite measurements. These results are separated per Optical Water Type (OWT) and extrapolated 

over the applicable range of each individual algorithm used to compute a single measurement. 

Uncertainties are thus simultaneously characterized for the whole system including satellite sensor, 

atmospheric correction, and algorithms for water column substance concentrations.  

End-to-end characterization of uncertainty is more feasible than the propagation of uncertainty 

associated with each part of the system because the processing chain includes elements of non-linear 

optimization in algorithms with multiple free variables introducing a high degree of complexity. Sensitivity 

of the system to errors such as noise can be explored separately but is not in scope of this work.  

The characterization of uncertainty based on in-situ validation yields an uncertainty function for each 

desired uncertainty metric, which is either the relative uncertainty (%), relative unbiased uncertainty (%, 

not including systematic effects) or absolute relative uncertainty (%) depending on the specific product. 

Where these uncertainty functions are based on a sufficient number and range of in-situ observations, 

they are used to propagate product uncertainty through each contributing algorithm and for each 

measurement or pixel. This propagation of uncertainties is only as representative as the collection of in-

situ reference observations, and the set of modelled responses. For example, adjacency to land or 

atmospheric composition are expected sources of uncertainty, but not currently modelled due to lacking 

(meta)data in the in-situ reference datasets.  

Lakes_cci marks the first introduction of the per-pixel uncertainty products in the Calimnos multi-sensor 

satellite data processing chain. The evaluation of uncertainty underlying the per-pixel uncertainty in CDRP 

v2.1 is based on the Lake Bio-optical Measurements and Matchup Date for Remote Sensing (LIMNADES) 

data set of in-situ optical-biogeochemical observations, contributed by various research groups and 

curated at the University of Stirling. Over time, it is expected that the number of recent observations in 

this database will grow and this would lead to more accurate estimates of uncertainty for currently under-

sampled water types and their corresponding algorithms.  

The uncertainty characterization approach described here is further detailed in Liu et al. (2021).  

 

5.2 Sources of uncertainty  

The following is an overview of sources of uncertainty and their expected (or unknown) effect on the LWLR 

product or derived water column products. For each element it is indicated whether the uncertainty is 

planned to be studied in detail or only part of the end-to-end uncertainty characterization.  

Detector noise: this effect is expected to be random and variable over time. It is included in the end-to-

end uncertainty characterisation insofar as it is present in the match-up data set used during validation 

of individual algorithms. It is possible that the magnitude of this effect changes over time. We expect this 

effect to be accounted for (if present) during analysis of inter-sensor bias, when the observation periods 

of two sensors overlap.  

Observation noise: certain observation effects, notably the optical pathlength to the target under variable 

viewing and illumination angles, are expected to influence the magnitude in uncertainties resulting from 

atmospheric correction of the LWLR signal. However, due to limited reference data we do not anticipate 
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to isolate this effect. Due to the non-linear optimisation methodology of POLYMER, the atmospheric 

correction algorithm used for MERIS, OLCI and MODIS, it is not possible to predict whether the effect is 

likely positive or negative. This will equally depend on the shape and magnitude of non-atmospheric 

components, including LWLR and sun glint.  

Algorithm effects: It is commonly understood that the dominant source of error in deriving LWLR stems 

from the separation of atmospheric path radiance and LWLR. This is an optimisation problem with several 

free variables, only bounded by supplying specific wavebands which respond to either atmospheric or 

water optical features. The algorithm uncertainty also relates to adjacency effects, since the atmospheric 

correction error is expected to increase with proximity to land and specifically when LWLR departs from 

zero in the near infra-red and shortwave infra-red, where highly efficient light absorption by water is a 

dominant optical feature. 

Algorithms for the retrieval of optical-biogeochemical water column properties have limited ranges of 

applicability, e.g. to relatively clear or turbid waters. Candidate algorithms in Lakes_cci are calibrated 

against in-situ data to counteract biases in both LWLR and the algorithms themselves. This takes place 

within a framework of Optical Water Types to limit the application of any given algorithm outside of its 

calibrated range. For some water types, calibration, validation and resulting characterisation of 

uncertainty still relies on the same data set, due to limited availability of satellite match-ups. Where 

possible, the optimisation and characterisation of uncertainties are separated.  

Calibration effects: the methodologies and accuracy of in-flight sensor calibration have evolved over 

several generations of ocean colour sensors. Degradation of both sensor and on-board calibration 

materials and the need to calibrate the response of a (usually) 2-dimensional sensor array which may 

further include multiple detectors, add to the complexity of this challenge. Two activities contribute to 

achieving consistent sensor response between satellite missions. Sensor-to-sensor comparisons cannot 

solely rely on simultaneous observations, because variability across and between detectors needs to be 

accounted for, while different viewing and illumination angles will introduce real divergence between 

sensors. Alternatively, system vicarious calibration aligns the system of sensor response plus atmospheric 

correction between sensors and optionally against reference measurements at ground level. Within 

Lakes_cci we will primarily consider vicarious calibration during the overlap of sensor missions. This 

approach does not specifically attribute uncertainty (specifically, bias) to the sensor but prioritises 

harmonized retrievals of LWLR despite differences in sensor capabilities such as radiometric sensitivity 

or waveband configurations.  

Misclassification effects (e.g. cloud, land, water, subpixel variation): For inland waters, the presence of 

cloud or land may introduce an adjacency effect (usually a brightening in the near infra-red) on nearby 

water pixels. This adjacency effect leads to misinterpretation of the contribution of the atmosphere to 

signal at the sensor, usually resulting in over-correction for atmospheric effects and low or negative water-

leaving reflectance values. This effect propagates to the derived products (chlorophyll-a and turbidity) 

depending on specific algorithm sensitivity to these effects. This effect is not systematic in nature and 

thus expected to be reflected in product uncertainty.  

Moreover, inland waters are dynamic and optically complex waters, where vegetation (including both 

algae and macrophytes) occur in irregular shapes which can fully or partially cover image pixels. The 

uncertainties on chlorophyll-a or turbidity estimates would then be introduced by mixed pixels containing 

both algae and algae free surfaces. For some shallow waters, the presence of submerged or emergent 

macrophytes may also introduce uncertainties in chlorophyll-a retrieval since the current algorithms do 

not necessarily separate vegetation (particularly with sub-pixel cover). We do not anticipate to isolate this 

effect because such cases are not typically included in in-situ reference observations. 
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5.3 End-to-end uncertainty budget 

LWLR per-pixel product uncertainties are extrapolated from end-to-end algorithm validation. For LWLR, 

the validation results are specific to each combination of satellite sensor and algorithm. For products 

derived from LWLR (chlorophyll-a, turbidity) they are further separated by Optical Water Type (OWT). A 

flow chart of the validation procedure yielding the uncertainty models from which per-pixel uncertainties 

are generated, is provided in Figure 21.  

 

Figure 21: Flow chart of the end-to-end validation of LWLR products against in-situ observations, resulting in uncertainty 

models.  

The uncertainty of LWLR is always expressed as a function of waveband. Additionally, the amplitude of 

reflectance (in case the response is non-linear) and the time difference between satellite and in-situ 

reference observations can be evaluated. For the propagation of the uncertainty model to individual 

satellite observations (pixels) only the waveband and optionally the amplitude are taken into account.  

If the number of matchups between in-situ and satellite observations is low, the matchup time window 

may be extended at the expense of higher uncertainties. The time window will not exceed more than 7 

days from the satellite observation. The minimum number of matchups to derive statistically robust 

estimates of uncertainty will be in the order of 50 - 100 observations distributed over multiple lakes and 

spanning a range of reflectance amplitudes representative of the global variability in LWLR. When such 

conditions are not met for a given sensor-waveband combination, the uncertainty model is not used; 

corresponding pixels are flagged as having unknown product uncertainty.  
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Ultimately, the validation procedure for LWLR yields uncertainty models per sensor-waveband for the 

relative uncertainty (RU, %) and relative unbiased uncertainty (RUU, %). 

The uncertainty estimation of RU and RUU for LWLR is conducted by first calculating the difference and 

unbiased Difference (see below) between the matchups of the in-situ and remote sensing Rw for each 

band.  

Difference 

The difference is expressed as: 

Diff =Rsat  - RIS           [5.1] 

Where RIS is the in-situ observation of Rw, and Rsat is the remotely sensed Rw. 

Unbiased Difference (UD) 

The UD is defined as the distance between the remote sensing Rw and the regression line (between the 

in-situ and satellite Rw matchups). This removes systematic effects from the uncertainty estimate which 

is desirable when the product is subject to further calibration (as is done with downstream chl-a and 

turbidity algorithms). The linear regression line (Y) between in-situ and remote sensing Rw matchups at 

each waveband can be written as  

Y = a*RIS + b          [5.2] 

Where a and b are coefficients from the regression. The UD can be then obtained by subtracting the Y 

from the satellite Rw 

UD = Rsat – Y          [5.3] 

Secondly, linear regression relationships of each band are obtained between the satellite Rw and the 

uncertainty (Difference and Unbiased Difference) using the in-situ and satellite Rw matchups (Figure 22 

and Figure 23 below).  

Finally, the linear models of Difference and Unbiased Difference are then applied to each pixel. The 

Relative Uncertainty and the Relative Unbiased Uncertainty of each pixel can be calculated as follows: 

Relative Uncertainty (RU) 

This metric is expressed as  

RU (%) = ( Diffpix  / Rpix )*100%        [5.4] 

Where Diffpix is the retrieved difference of each pixel using the models shown in Figure 22Erreur ! Source 

du renvoi introuvable. and Rpix is the corresponding Rw on the satellite image.  

Relative Unbiased Uncertainty (RUU) 

RUU (%) = ( UDpix / Rpix )*100%       [5.5] 

Where UDpix is the retrieved Unbiased Difference of each pixel using the models shown in Figure 23. 

Please note that the RU and RUU calculated for the LWLR are both not absolute, in order to show the 

systematic under-estimation of LWLR (Figure 22,  Figure 23). The application boundary constraints of 

uncertainty models for each waveband are determined based on the matchup dataset. If any waveband 

has no associated uncertainty model (e.g. in-situ data were too sparse) or the LWLR is out of the 

application range, the pixel will be flagged as having unknown uncertainty in the uncertainty product. 
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Figure 22: Linear correlation between Remote sensing Rw and the Difference between in-situ and remote sensing Rw matchups (among which the wavebands of 865, 885 and 900 nm are not 

included in the Rw uncertainty products because of the sparse matchups). 
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Figure 23: Linear correlation between Remote sensing Rw and the Unbiased Difference between in-situ and remote sensing Rw matchups (among which the wavebands of 865, 885 and 900 nm 

are not included in the Rw uncertainty products because of the sparse matchups). 
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The OWTs are not taken into account during validation of LWLR due to the typically low number of in-situ 

reference measurements that are available. The OWTs are, however, considered in the validation of 

algorithms for chlorophyll-a and turbidity since these vary considerably in their suitability to describe water 

column properties of the different water types.  

The uncertainty of the algorithms for chlorophyll-a and turbidity is provided for each of the statistical 

metrics listed above. Each algorithm is evaluated against the full matchup data set available for the 

observation period of the satellite sensor. This includes samples with a value considered outside of the 

applicable range of the individual algorithm. This is done because OWT membership is a fuzzy property 

(one observation belongs to multiple classes, with varying degrees of similarity) so that a clear separation 

of in-situ data and a subset of algorithms cannot be made objectively. This approach also ensures that 

the uncertainty model captures the reduction of uncertainty with increasing OWT class membership, 

which is ultimately how the per-pixel uncertainty is generated. Finally, this has the added benefit that the 

number of data points on which the analysis is based is higher than if any arbitrary thresholds were used, 

which results in a more robust statistical model of product uncertainty.  

As shown in the processing flowchart (Figure 21), the uncertainty model per OWT and chlorophyll-a or 

turbidity algorithm is expressed as a function of OWT class membership. An algorithm that is suitable for 

a given OWT and water column property is expected to show a linear response over its applicable range.  

The uncertainty metric used for the chlorophyll-a or turbidity algorithm is absolute relative uncertainty 

(ARU, %), which is defined using the matchup dataset as follows: 

ARU (%) = (|xd – xm| / |xm|) * 100%       [5.6] 

where xd is the satellite derived value from the chlorophyll-a/turbidity algorithms and xm is the in-situ 

measured chlorophyll-/turbidity. 

In the Lakes_CCI processor, the top-3 ranking OWT scores and their corresponding algorithm results are 

included in the algorithm blending procedure, which provides a weighted average of the algorithm results 

corresponding to those 3 OWTs. An example of the relationship between an ARU metric and OWT class 

membership is given in Figure 24 which shows the weighted chlorophyll-a by the top 3 OWT class 

membership in relation to the membership of OWT 9 using matchup data for the entire MERIS observation 

period. This shows a robust and relatively low ARU over a wide range of class membership values, 

indicating a wide application range of this scheme. There is a slight skew of the RU towards lower values 

which increases with class membership score of OWT 9, suggesting that the blended algorithm is optically 

suited for this OWT. A linear regression fit of this relationship provides the ARU uncertainty e of this 

algorithm-OWT combination as  

          [5.7] 

where a and b are the slope and intercept of the linear fit and subscript (4) is the OWT class.  

Finally, to compute chlorophyll-a product uncertainty for each satellite observation, the mapping of 

different algorithms corresponding to OWT membership scores are taken into account.  The uncertainties 

associated with each of the selected algorithms are weighted in the same fashion, taking the sum of each 

of the top-3 OWT uncertainties multiplied by membership score for that OWT relative to the sum of 

membership scores of the number (n=3) of classes considered, yielding the per-pixel uncertainty E:  

𝐸 = ∑ 𝑒𝑖
𝑚𝑖

∑ 𝑚𝑖
𝑛
𝑖=1

𝑛
𝑖=1          [5.8] 

Upper and lower boundary of the OWT membership score for the application of each OWT uncertainty 

model is determined based on the matchup dataset. If the OWT membership score is out of the 

application range in the uncertainty calculation procedure, then the pixel will be flagged as having 

unknown product uncertainty.  
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Figure 24: Correlation of Absolute Relative Uncertainty (ARU) of the top-3 weighted chlorophyll-a by the OWT membership 

score in relation to the membership score for optical water type 9. Reproduced from Liu et al. (2021). 

Applying the uncertainty models to MERIS observations result in uncertainty maps such as those shown 

in Figure 25. Maps are shown for each of the uncertainty products provided in CDRP v1.0 over lakes 

Vänern and Vättern in Sweden on 26th July 2006. The procedure for CRDP v2.1 is unchanged, but includes 

separate matchup-based analysis and uncertainty models for MODIS-Aqua observations. Uncertainties 

are reported as relative product uncertainty, with Turbidity and chlorophyll-a relative uncertainty (RU) as 

their absolute values. The uncertainty products for LWLR are provided as absolute and relative-unbiased 

uncertainty to show the systematic underestimation of reflectance. For the latter, both relative uncertainty 

(RU) and relative unbiased uncertainty (RUU) show negative uncertainties in the two lakes, which 

illustrates over-correction for atmospheric effects (Figure 25a and b). Positive uncertainty values for 

Rw(665) are observed near land, as a result of the land-adjacency effect. In terms of turbidity, patches 

with high uncertainties are observed both in open water and near land (Figure 25c). For chlorophyll-a, 

generally lower uncertainties are found in lake Vänern (in the north-west) compared to lake Vättern (south-

east), as seen in Figure 25d. This is consistent with smaller uncertainties in Rw(665) in lake Vänern.   
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Figure 25: Per-pixel uncertainty products. (a) Relative uncertainty of Rw(665), (b) Relative unbiased uncertainty of Rw(665), (c) 

Absolute relative uncertainty of Turbidity and (d) Absolute relative uncertainty of chlorophyll-a. 

 

5.4 Recommendations 

5.4.1 To users 

The provided uncertainty products for LWLR (Land and Water Regression) are calculated on a per-pixel 

basis for the variables of Rw (per-band), chlorophyll-a, and Turbidity. 

For each Rw band, two uncertainty products are provided: Relative Uncertainty (RU) and Relative 

Unbiased Uncertainty (RUU). Both of these are expressed as percentages (%). The RUU is specifically 

calculated to eliminate the systematic differences between satellite and in-situ measurements. By doing 

so, it addresses the issue of systematically underestimating LWLR due to challenges associated with 

accurately performing atmospheric correction in optically complex inland waters. 

Users should consider RU to be the most representative uncertainty product for LWLR, describing 

uncertainties stemming from the sensor, sensor calibrations, radiometric corrections, viewing effects and 

atmospheric correction. However, when using products derived from LWLR (chlorophyll-a, turbidity) which 

have been individually tuned against in-situ reference observations of those quantities, RUU should be 

considered more representative of the relative effect of LWLR uncertainties on those products, as this 

takes into account the effect of tuning the downstream algorithms.  

The derived products have their own uncertainty models, which may differ significantly from the RUU of 

the Rw products. This is the result of tuning these products per OWT against larger in-situ datasets, and 

using specific Rw wavebands which are most diagnostic of changes in the targeted quantity. When using 

LWLR to derive new products without such tuning steps, the RU of the Rw should again be used as primary 

reference.  
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In cases where a specific waveband lacks an associated uncertainty model (for example, due to sparse 

in-situ data) or when the LWLR falls outside the application range, the pixel will be flagged as having an 

unknown level of uncertainty in the uncertainty product. 

The uncertainty products for chlorophyll-a and turbidity are both presented as relative uncertainties, 

expressed as a percentage (%). It is important to note that high uncertainties associated with low 

estimates do not automatically indicate poor estimations. To illustrate, consider a pixel with a chlorophyll-

a estimate of 0.1 mg m-3 and an uncertainty of 70%, where the uncertainty range is 0.03 – 0.17 mg m-3.  

In CRDP v2.1.0, a new quality flag band (lwlr_quality_flag) is included for LWLR. The quality indicators 

included in this band serve to provide users with valuable information regarding the reasons behind 

missing observations and assist in the appropriate utilization of the data. Among the flags available, two 

"consistency" flags have been incorporated. These flags highlight potential inconsistencies between 

detected ice and LWLR products. Whilst (sub-pixel) ice cover and open-water lake colour may occur on 

the same observation day, the occurrence of thin ice may lead to unrealistic values of LWLR and 

particularly turbidity. Such cases are flagged based on the value distribution of the turbidity and 

chlorophyll-a products against per-lake skin temperature (LSWT) climatology. To ensure the reliability and 

accuracy of the data, it is highly recommended that users consider these product flags, namely 

"lwlr_poor_consistency" and "lwlr_low_consistency." Pixels flagged with these indicators should be 

excluded, particularly in studies that focus on climatology or phenology including the ice season. 

 

5.4.2 To the validation team 

In addition to the aforementioned recommendations for users, it is advised that the validation team 

examines the various flags present in the LWLR L2 dataset. These flags encompass the L1B product 

flags, pixel identification flags, and atmospheric correction flags. These flags provide valuable information 

regarding the processing and quality assessment of the data. By analysing these flags, the validation 

team can gain insights into potential issues or limitations within the LWLR L2 dataset. The LWLR L2 

dataset is not publicly accessible. Interested parties can obtain access to this dataset by contacting the 

LWLR team directly. This ensures that the dataset is distributed to teams capable of analysing the 

unfiltered data, fostering accurate validation and analysis. 

An upgrade to POLYMER (4.15+) is now available which allows for a wider range of initialization conditions 

to make appropriate use of the mineral absorption component in the bio-optical model, which was 

previously unstable. This version also makes use of the SWIR band to better resolve highly turbid water 

conditions. It is highly recommended to test this potential improvement at scale, across all sensors.  

5.5 References 

Liu X., Steele C., Simis S., Warren M., Tyler A., Spyrakos E., et al. (2021). Retrieval of Chlorophyll-a 

concentration and associated product uncertainty in optically diverse lakes and reservoirs. Remote 

Sens Environ: 267:112710.  
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6 Lake Ice cover – LIC 

 

6.1 Uncertainty characteristics   

The assessment of uncertainty in the LIC product is currently performed through computation of a 

confusion matrix built on independent statistical validation. Thus, uncertainties are not assessed at a per-

pixel level, but rather from classification error calculated from multiple samples/images. The reference 

data for validation are collected from the visual interpretation of imagery from several ice seasons (freeze-

up and break-up periods) by skilled ice analysts. Classification error (%) derived from the confusion matrix 

is the metric used to report total uncertainty for each class (ice, water, cloud). In Lakes_cci LIC (L3) 

product v2.1, pixels belonging to the same class are simply assigned the same % error value in the 

uncertainty variable. 

 

6.2 Sources of uncertainty  

The sources of uncertainty in the Lakes_cci LIC product are provided below along with a brief description 

of the expected effects from each source. It is important to note that the random forest algorithm 

implemented for LIC v2.1 production uses MODIS Terra/Aqua Level 1B (TOA Reflectance) 5-min swath 

(MOD02), collection 6.1 (C6.1), as input data. On-orbit noise characterization of MODIS reflective and 

thermal bands is regularly monitored to ensure the fidelity of the on-orbit calibration to the prelaunch 

measurement (Angal et al., 2015; Sun et al., 2014). The primary source of uncertainty in the LIC product 

is expected to come from the retrieval algorithm (including the selection of sampled sites/pixels used to 

develop the algorithm). 

Detector noise/sensor degradation: The MODIS sensors (launched on the Terra and Aqua satellites in 

December 1999 and May 2002, respectively) are currently operating well beyond their life expectancy of 

six years; their detectors are degrading. However, MODIS was designed with stringent requirements on 

the sensor calibration accuracy and data product quality. It is equipped with a set of on-board calibrators 

(OBCs), including a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) for the reflective solar 

bands (RSB) calibration and a blackbody (BB) for the thermal emissive bands (TEB) calibration. MODIS 

RSB on-orbit calibration is reflectance based using the on-board SD plate with its bi-directional reflectance 

factor (BRF) determined pre-launch. MODIS TEB are calibrated on-orbit using the onboard BB.  

For technical reasons, not elaborated upon herein (see MODIS Characterization Support Team website, 

https://mcst.gsfc.nasa.gov), nonphysical trends in MODIS Terra data products, which result from 

calibration drift, have been observed and are well documented. On-orbit calibration procedures to 

mitigate long-term calibration drift, particularly at the shorter wavelengths, have been applied to MODIS 

C6.1 L1B data.  

Low illumination conditions: Low solar illumination conditions occur when solar zenith angles (SZA) are 

larger than 70 degrees and when a swath is near the day/night terminator. Those situations usually occur 

in the lakes located in high latitudes or during the period of ice formation just before or after polar 

darkness. With solar zenith angle increasing, the diffuse radiation flux increases, resulting in the 

attenuation of the radiation flux of incident sunlight at the surface. Therefore, top-of-the-atmosphere 

(TOA) reflectance is very low due to the lack of solar radiation reflected by the surface. The low solar 

reflectance conditions may increase the uncertainly in detection of ice cover. According to the research 

presented by Wu et al. (2021), due to the low illumination conditions resulting in low TOA reflectance from 

the Earth, more classification errors could appear in the period of ice freeze-up compared to the period 

of ice break-up.  

https://mcst.gsfc.nasa.gov/
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Geometry errors: MODIS Level 1B product provides images in 36 spectral bands and corresponding 

latitude and longitude data of WGS84 without projection information. In the pre-processing stage, MODIS 

pixels are resampled based on their coordinate to output grids by applying the nearest neighbour 

approach. Since MODIS uses the cross-track scanning mirror, pixels near the edge of a swath could be 

mis-matched to the output grids due to the bowtie effect and data errors of latitude and longitude. The 

mis-matched pixels highlighted in Figure 26b could present wrong surface features in the LIC product as 

Figure 26a shows. Moreover, because of the bowtie effect, the spatial resolution degrades from nadir to 

the scan edge. Therefore, as a result, the coarse MODIS pixels near the swath edge could raise 

uncertainty in the LIC product. For example, compared to Figure 26c, the MODIS image acquired from the 

same day by Terra shown in Figure 26b shows less details of surface condition. 

 

Figure 26: Example of impact of geometry errors on LIC product, Lake Onega, 28 April 2019. (a) LIC daily product from MODIS 

Terra, (b) false colour composite of MODIS Terra image (bowtie), and (c) false colour composite of MODIS Terra image (non-

bowtie) 

Algorithm: The algorithm implemented for Lakes_cci LIC v2.1 production follows a machine learning 

approach; here random forest was selected. Wu et al. (2021) presented and assessed the lake ice 

classification performance of random forest and other algorithms by using MODIS Terra Level 1B product. 

Sampled data (AOIs) from 17 lakes across the Northern Hemisphere were used to train and validate the 

random forest algorithm. Lake sites (sampled pixels) for algorithm development and validation must be 

carefully selected to capture the broadest suite of conditions (e.g. clear-sky, overcast, partly cloudy, low 

to high solar zenith angles, open water from low to high turbidity, clear and thin ice, snow-covered ice) 

that have an impact on the magnitude and variations of TOA reflectance (MOD02) for the classes of 

interest; here ice, open water and cloud.  Compared to the classification accuracy calculated from a 

random k-fold cross-validation approach, lower classification accuracy was obtained through temporal 

and spatial cross-validation (Wu et al., 2021). The accuracy differences between cross-validation 

methods, therefore, reveal that spatial and temporal heterogeneity of MODIS observations could result 

in classification errors by applying random forest or any other classifier. Unexpected classification errors 

may be present in the global lake ice maps. In preparation for the delivery LIC v.3.0 product, additional 

training sites (i.e., from more lakes and conditions) will be collected to further improve accuracies for 

each of the classes. 

Misclassification: In the processing chain implemented for LIC v2.1 production, the maximum water 

extent mask derived from ESA CCI Land Cover v4.0 at 150-m resolution is used to determine which pixels 

within a lake will be processed with the threshold-based algorithm to determine class belonging. Since 

the mask represents maximum water extent, it can introduce some misclassification errors along the 

shoreline of lakes (i.e., mask spilling over land so that some MODIS land pixels will be incorrectly flagged 

as lake pixels). A cursory look reveals that this may indeed be the case Figure 27, but the full impact of 

this mask remains to be quantified. High turbidity and the presence of algae blooms during the ice-free 

season change the reflectance characteristics of open water and may also cause erroneous ice cover 

detection in the spring or summer (Riggs and Hall, 2015). There are also cases when thin clouds are 
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classified as ice cover and snow-free melting ice in the advanced stage as open water. To reduce 

uncertainty introduced from these varied sources, validation is ongoing over a larger number of lakes 

globally and training pixels are being added to increase the performance of the random forest classifier 

in these more difficult cases) prior to the release of LIC v3.0 product. 

 

Figure 27: Example of pixels along the shoreline of Lake Ontario mislabelled as ice (in yellow), 9 February 2019 

 

6.3 End to end Uncertainty budget 

For Lakes_cci LIC product v2.1, class uncertainty is computed from a confusion matrix built on an 

independent statistical validation process. The confusion matrix shown in Table 2 was produced from 

AOIs (n = 10,075,081 pixels) collected through visual interpretation of 219 Terra images over an ice 

season at Great Slave Lake (GSL) and Lake Ladoga (LL) (GSL: 2018-2019, LL: 2019). 

Table 2 shows the overall accuracy (97.34%) as well as the accuracy of individual classes (97.77% for 

ice cover, 99.17% for water, and 96.93% for cloud cover). Uncertainty is reported as % error from 

classification (100 - % class accuracy) for each class. Currently, pixels belonging to the same class are 

given the same error value. The evaluated uncertainty for LIC L3 product is 0.83% for open water, 3.07% 

for cloud cover and 2.23% for ice cover, as derived from accuracy assessment (confusion matrix) of each 

class through independent statistical validation. An example of the uncertainty map for the Lake Baikal 

is shown in Figure 29. 

Table 2: Confusion matrix with class accuracies for Lakes_cci LIC product v2.1 

Lakes_cci LIC 

Retrieval Algorithm Class 

Accuracy 

(recall) 

Uncertainty 
Ice Water Cloud 

U
s
e

r-
d

e
fi

n
e

d
 

Ice 1,514,517 4,518 30,057 97.77% 2.23% 

Water 1,540 1,286,093 9,213 99.17% 0.83% 

Cloud 199,996 22,265 7,006,882 96.93% 3.07% 

 Overall Accuracy: 97.34% 
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Figure 28: Uncertainty map of Lake Baikal, 19 December 2016 

 

6.4 Recommendations 

6.4.1 To users 

Classification error (%) derived from the confusion matrix is the metric used to report total uncertainty for 

each class (ice, water, cloud). In Lakes_cci LIC v2.1, all pixels belonging to the same class are assigned 

the same % error value in the uncertainty band provided; that is all pixels on any day are given a value of 

either 0.83% for open water, 3.07% for cloud cover and 2.23% for ice cover. Users should be aware that 

while the % classification errors are relatively low, they are only indicative of the overall performance (not 

per-pixel level) of the random forest (RF) algorithm. Through extensive visual examination of the product 

for many lakes over several years, there are instances where pixels on a given day or over a few days will 

have been misclassified (see algorithm and misclassification under Section 6.2). 

6.4.2 To the validation team 

As indicated above, the uncertainty band provided for LIC v2.1 contains only three possible values for any 

pixel on any given day (overall % error for water, ice and cloud cover). The uncertainty band is only 

indicative of the overall performance of the RF classifier. Validation of the uncertainty currently provided 

requires the use of colour composites of the original MODIS images used as input to the RF algorithm to 

identify cases (pixels) where classification is incorrect. The identified cases could be added to the training 

dataset to further improve the RF performance towards the release of LIC v3.0. It should also be noted 

that efforts are underway to implement per-pixel uncertainty (aleatoric, systematic and total) estimates 

within the RF classifier which will be provided in LIC v3.0. 

6.5 References 

Angal, A., Xiong, X., Sun, J. and Geng, X. (2015) On-orbit noise characterization of MODIS reflective solar 
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7 Lake Ice Thickness- LIT 

 

7.1 Uncertainty characteristics   

The reported LIT estimates are, for each satellite overpass on a target lake, the mean and standard 

deviation of the LIT measurements obtained by fitting the Ku radar waveforms in the Region of Interest 

(RoI) with a tailored analytical model for LIT (LRM_LIT retracking analysis). The RoI is a segment of the 

satellite ground track over the target lake chosen to minimize land contamination, thus consisting in the 

part of the track furthest from the shore, and large enough to include enough statistics (typically ~150+ 

waveforms) to have robust and reliable LIT estimations. The LIT uncertainty reported in the LIT product 

includes contributions related to the retracked radar waveform’s noise and the spatial variation of the LIT 

estimations within the RoI.  

 

7.2 Sources of uncertainty  

The observed radar waveform is a backscattered radar wave signal corrupted by a multiplicative speckle 

noise. The LIT estimations are obtained by fitting with an analytical waveform model the (noisy) Ku radar 

waveforms within the Region of Interest of a target lake. The waveform model is an analytical five 

parameters model, and the estimator is a Weighted Least Square Estimator where the weights are 

defined as the data variance within the RoI, ensuring unbiased and optimal estimation of the parameters 

given the noise (see Mangilli et al. 2022). The LIT mean and standard deviation, for each flyover and 

pass, is obtained from the Gaussian fit of the histogram of the LIT measurements in the RoI. 

In the case of uniform ice cover, the dispersion of the LIT measurements (i.e. the width of the histogram) 

is due to the waveform noise, as is typically the case in the middle of the ice season when the ice is well 

formed and the LIT spatial variations are small. This is illustrated in the top row plots of Figure 29 that 

show the LIT spatial evolution in the RoI superimposed to the MODIS image on the same date (left) and 

as a function of the latitude (middle) in February 2016. The ice coverage is homogenous leading to a 

stable spatial evolution of the LIT measurements around a mean LIT of 0.97m with an uncertainty of 

11cm (see the histogram in top right plot). However, at the seasonal transitions, when the ice is forming 

or melting, the lake surface is no longer homogeneous, leading to a significative variability of the LIT 

signature in the radar waveforms. This translates in a significative spatial variation of the retrieved ice 

thickness which dominates the error budget, resulting in an increased LIT uncertainty with respect to the 

uncertainty expected from the waveform noise contribution. This is illustrated in the bottom row plots of 

Figure 29 in the case of the beginning of the snow/ice melting over the Great Slave Lake at the end of 

April 2016. The MODIS image shows in fact an irregular ice surface with melting pond, cracks and open 

water channels that explains the higher variability of the LIT spatial evolution in the RoI. As shown in the 

middle and bottom right plots, many LIT measurements are 0, but non-zero LIT is still detected in some 

part of the RoI. The mean LIT in the RoI is compatible with 0 and, because of this spatial variability, the 

associated uncertainty is a factor of ~2.5 bigger than the case of an uniform ice coverage. 
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Figure 29: Evolution of Jason-2 LIT estimates over Great Slave Lake. The left column plots show the along-track LIT estimates 

superimposed on MODIS images. Plots in the middle column show the LIT spatial evolution. The right column plots show the 

histograms of the LIT measurements in the Region of Interest over the lake, and the associated Gaussian fit. The figures in the 

top row refer to February 2016 while the figures at the bottom to end of April 2016. 

 

7.3 End to end Uncertainty budget 

We generated two sets of Jason-like waveform simulations to assess the LIT uncertainty due to the 

waveform noise, and, by comparison with the results obtained with real data, to better quantify and 

understand the contribution linked to the LIT spatial variation: 

• SIM1: set of 100 simulations representative of Jason winter-like waveforms where the ice 

thickness signature is present (top left panel of Figure 30) 

• SIM2: set of 100 representative of Jason summer-like waveforms without the ice thickness 

signature (bottom left panel of Figure 30) 

The right column of Figure 30 shows the distribution of the retrieved LIT normalized to the total number 

of counts for the winter-like simulations SIM1 (top panel) and for the summer-like simulations SIM2 

(bottom panel). The LIT estimation from the winter-like simulations is 1.046±0.124 m, which is fully 

consistent with the input value used to generate the simulations of 1.049 m, shown as a black dashed 

line in the top right histogram plot. In the case of the summer-like simulations SIM2, the LIT estimation is 

0.034 ± 0.054 m, which is compatible with the ice thickness of zero used as input value to generate the 

SIM2 simulations. 

As expected, the LIT uncertainty derived from the SIM1 simulations is fully compatible with the uncertainty 

derived from real data in the case of uniform ice coverage (top right plot of Figure 29), confirming that in 

this case the LIT uncertainty is entirely due to the waveform noise. The LIT uncertainty derived from the 

SIM2 simulations is smaller than the uncertainty obtained with the SIM1 simulations, likely because there 

is not the step-like LIT signature in the SIM2 waveforms, allowing for a smaller dispersion of the 

parameters that, as LIT, are linked to the waveform leading edge that has no noise in the case of SIM2. 

Also, the accuracy of the SIM2 LIT estimates is significantly smaller than the accuracy estimated from 

real data, when, during the seasonal transitions, the LIT measurements are compatible with zero (see 

e.g. the bottom right plot of Figure 29). As discussed in the previous section, this is mainly due to the 

significative LIT spatial variability in real data, linked to the fact that the ice coverage is no longer uniform 
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because of the melting conditions. Related to this, the fractional ice coverage (i.e. altimeter footprint 

containing both open water and ice) can also contribute to increase the LIT spatial variability, as in this 

case the LIT signature could disappear from the waveforms making it more difficult to detect the ice in 

some part of the RoI. Finally, it should be emphasized that the LRM_LIT retracker is specifically designed 

for the analysis of LIT and it is not the optimal tool for the analysis of Brownian type echoes, in particular 

with a slope due to the presence of waves (SWH is not a parameter of the LRM_LIT waveform model). 

This could lead to an increased uncertainty when retracking open water waveforms.  

 

Figure 30:  Validation of the LIT estimation with the LRM_LIT retracker on Jason-like simulations. In the left column are shown 

Jason-like waveform simulations corresponding to the winter-like SIM1 waveforms (top) and to the summer-like SIM2 

waveforms. In the right column are shown LIT histograms computed for the winter-like simulations SIM1 (top panel) and for 

the summer-like simulations SIM2 (bottom panel). The blue lines correspond to the Gaussian fit of the histograms. The input 

values used to generate the simulations are also shown as dashed black lines. 

 

7.4 Recommendations 

7.4.1 To users 

The reported LIT estimates are, for each satellite overpass on a target lake, the mean and standard 

deviation of the LIT measurements in the Region of Interest (RoI) chosen to minimize land contamination, 

thus consisting in the part of the track furthest from the shore, and large enough to include enough 

statistics to have robust and reliable LIT estimations. The uncertainty reported in the LIT product includes 

therefore contributions related to the retracked radar waveform’s noise and the spatial variation of the 

LIT estimations within the RoI. For this reason, the LIT uncertainty increases at the seasonal transitions 

as during ice forming and melting, the lake surface is not homogeneous with a higher spatial variation of 

the ice (and snow) properties and thickness. As the LIT measurements are taken from a specific region 
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on the lake, the reported LIT and the associated uncertainty cannot be generalized to the whole lake. The 

spatial information of the LIT measurement should be always taken into account when using the LIT 

products, in particular when comparing the results with LIT estimates obtained with other datasets.  

7.4.2 To the validation team 

We recommend not to use in-situ data to validate the LIT measurements provided in the products, unless 

in situ data are taken from a region of the lake near the satellite ground track (which is usually not the 

case). In fact, in situ data are generally collected near the shore, while satellite data are taken from the 

middle of the lake to avoid land contamination. This difference of measurement induces two different 

environments in terms of bathymetry, wind exposure, snow type and quantity. All these parameters play 

a key role on ice formation and thickness and they can lead to significant LIT differences, making in situ 

data not suitable for a robust validation as these differences are significatively bigger than the measured 

LIT uncertainties. A lake ice model, as CLIMo (Duguay et al 2003), is a more suitable tool for validation. 

In the case in situ data near the analysed RoI should be collected and made publicly available, they would 

be the preferred dataset to be used for validation. 
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Appendix A - List of acronyms 

AATSR Advanced Along Track Scanning Radiometer 

AATSR Advanced Along Track Scanning Radiometer 

AERONET-OC Aerosol Robotic NETwork – Ocean Color 

AMI Active Microwave Instrument 

AMSR-E Advanced Microwave Scanning Radiometer for EOS 

APP Alternating Polarization mode Precision 

ASAR Advanced Synthetic Aperture Radar 

ASLO Association for the Sciences of Limnology and Oceanography 

ATBD Algorithm Theoretical Basis Document 

ATSR Along Track Scanning Radiometer 

AVHRR Advanced very-high-resolution radiometer 

BAMS Bulletin of the American Meteorological Society 

BC Brockman Consult 

C3S Copernicus Climate Change Service 

CCI Climate Change Initiative 

CDR Climate Data Record 

CDOM Coloured Dissolved Organic Matter 

CEDA Centre for Environmental Data Archival 

CEMS Centre for Environmental Monitoring from Space 

CEOS Committee on Earth Observation Satellites 

CGLOPS Copernicus Global Land Operation Service 

CIS Canadian Ice Service 

CLS Collecte Localisation Satellite 

CMEMS Copernicus Marine Environment Monitoring Service 

CMUG Climate Modelling User Group 

CNES Centre national d’études spatiales 

CNR National Research Council of Italy 

CORALS Climate Oriented Record of Altimetry and Sea-Level 

CPD Communication Plan Document 

CR Cardinal Requirement 

CRG Climate Research Group 

CSWG Climate Science Working Group 

CTOH Center for Topographic studies of the Ocean and Hydrosphere 

DOC Dissolved Organic Carbon 

DUE Data User Element 

ECMWF European Centre for Medium-Range Weather Forecasts 

ECV Essential Climate Variable 

ELLS-IAGRL European Large Lakes Symposium-International Association for Great Lakes Research  

ENVISAT Environmental Satellite 

EO Earth Observation 

EOMORES Earth Observation-based Services for Monitoring and Reporting of Ecological Status 

ERS European Remote-Sensing Satellite 

ESA European Space Agency 

ESRIN European Space Research Institute 

ETM+ Enhanced Thematic Mapper Plus 

EU European Union 

EUMETSAT European Organisation for the Exploitation of Meteorological Satellites 

FAQ Frequently Asked Questions 

FCDR Fundamental Climate Data Record 
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FIDUCEO Fidelity and Uncertainty in Climate data records from Earth Observations 

FP7 Seventh Framework Programme 

GAC Global Area Coverage 

GCOS Global Climate Observing System 

GEMS/Water Global Environment Monitoring System for freshwater 

GEO Group on Earth Observations 

GEWEX Global Energy and Water Exchanges 

GloboLakes Global Observatory of Lake Responses to Environmental Change 

GLOPS Copernicus Global Land Service 

GTN-H Global Terrestrial Network – Hydrology 

GTN-L Global Terrestrial Network – Lakes 

H2020 Horizon 2020 

HYDROLARE International Data Centre on Hydrology of Lakes and Reservoirs 

ILEC International Lake Environment Committee 

INFORM Index for Risk Management 

IPCC Intergovernmental Panel on Climate Change 

ISC International Science Council 

ISO International Organization for Standardization 

ISRO Indian Space Research Organisation 

JRC Joint Research Centre 

KPI Key Performance Indicators 

LEGOS Laboratoire d'Etudes en Géophysique et Océanographie Spatiales 

LIC Lake Ice Cover 

LIT Lake Ice Thickness 

LSC Lake Storage Change 

LSWT Lake Surface Water Temperature 

LWE Lake Water Extent 

LWL Lake Water Level 

LWLR Lake Water Leaving Reflectance 

MERIS MEdium Resolution Imaging Spectrometer 

MGDR Merged Geophysical Data Record 

MODIS Moderate Resolution Imaging Spectroradiometer 

MSI MultiSpectral Instrument 

MSS MultiSpectral Scanner 

NASA National Aeronautics and Space Administration 

NERC Natural Environment Research Council 

NetCDF Network Common Data Form 

NOAA National Oceanic and Atmospheric Administration 

NSERC Natural Sciences and Engineering Research Council 

NSIDC National Snow & Ice Data Center 

NTU Nephelometric Turbidity Unit 

NWP Numerical Weather Prediction 

OLCI Ocean and Land Colour Instrument 

OLI Operational Land Imager 

OSTST Ocean Surface Topography Science Team 

PML Plymouth Marine Laboratory 

PP Payment Plan 

PRISMA PRecursore IperSpettrale della Missione Applicativa 

Proba Project for On-Board Autonomy 

QSR Quarterly Status Report 

R Linear Correlation Coefficient 

RA Radar Altimeter 

RMSE Root Mean Square Error 
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SAF Satellite Application Facility 

SAR Synthetic Aperture Radar 

SeaWIFS Sea-viewing Wide Field-of-view Sensor 

SIL International Society of Limnology 

SLSTR Sea and Land Surface Temperature Radiometer 

SoW Statement of Work 

SPONGE SPaceborne Observations to Nourish the GEMS 

SRD System Requirements Document 

SSD System Specification Document 

SST Sea Surface Temperature 

STSE Support To Science Element 

SWOT Surface Water and Ocean Topography 

TAPAS Tools for Assessment and Planning of Aquaculture Sustainability 

TB Brightness Temperature 

TM Thematic Mapper 

TOA Top Of Atmosphere 

TR Technical Requirement 

UNEP United Nations Environment Programme 

UoR University of Reading 

UoS University of Stirling 

US United States 

VIIRS Visible Infrared Imaging Radiometer Suite 

WCRP World Climate Research Program 

WHYCOS World Hydrological Cycle Observing Systems 

WMO World Meteorological Organization 

WP Work Package 
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