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1 Introduction 

This Algorithm Development Plan (ADP) is not for public distribution.. 

The ADP details for each Lakes_CCI ECV: 

- Algorithm developments planned to feature in CRPD v3.0. Examples include updates to models, 

classification codes, and algorithm training or calibration, at any processing level.  

- Priorities for future algorithm developments beyond the next annual cycle. 

For the LWE, LWLR, LSWT, LIC and LIT, the existing validation and the identified issues are developed in 

Product Validation and Algorithm Selection report (PVASR v 2.1.1) and not resume here. 
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2 Lake Water level - LWL  

 

2.1 Candidate algorithms for LWL 

The algorithm for LWL calculation is incorporated in the Hysope code, developed at LEGOS and detailed 

in the ATBD, and operates at CLS in the framework of the Hydroweb database. A version for non-

operational use also runs at LEGOS and is based on the same equations but using Geophysical Data 

Records (GDRs) (delivery delay = 90 days) instead of IGDRs (delivery delay 1 to 2 days) (Cretaux et al., 

2016).  

The procedure is run against data within a priori defined polygons of lake contours (using the common 

dataset of maximum water extent outlines created for Lakes_cci) which are then processed using the 

Hysope software which is classically using the following equation:  

LWL= Alt-Rcorr-TE          [2.1] 

Where LWL is considered with respect to a geoid, Rcorr is the measured range between the satellite and 

the lake surface, Alt is the altitude of the satellite above an ellipsoid and TE is the combination of all 

correction factors to take into account atmospheric refraction (propagation in the ionosphere and the 

troposphere), tidal effects (solid Earth, lake and polar), and geoid height above the ellipsoid. For readers 

who needs more detailed information a full discussion of the computation of LWL is found in Cretaux et 

al. (2009).  

All corrections are released in the GDRs or the IGDRs. The range is chosen from different retracking 

considering that generally the OCOG retracking is the most suitable for continental surface (see E3UB 

v2.1.1 document). The geoid correction is calculated using the repeat track technique (see E3UB v2.1.1 

and Cretaux et al. 2009, 2016).  

2.2 Validation results for LWL 

The general algorithm used to calculate water level over lakes is well known and established in scientific 

literature. To address the issues that are listed in the following sections, we need to analyse lakes where 

reference in situ data are available. Examples of these procedures are given in Ricko et al. (2012) and 

Arsen et al. (2015), comparing different lake databases.  

Lakes_cci cooperates with the State Hydrological Institute of St Petersburg, which provides in situ data 

of LWL for a set of Russian and central Asian lakes. We also use existing databases on the web to increase 

the number of lakes that can be used for this purpose.  

The comparative analysis allows the statistically best performing retracking algorithm to be selected, as 

has been widely demonstrated for lakes as well as rivers.  

Additional metrics to validate the LWL products include comparison of individual LWL retrieval to the long-

term LWL variability, to detect outliers. The impact of removing outliers is traced as part of this process.  

2.3 Identified issues for LWL 

There are two main issues currently under investigation for the processing of altimetry data over lakes. 

The first is related to the onboard tracking system, and the second is related to the processing of altimetry 

over small lakes.  

We have identified solutions to address onboard tracking issues based on new a priori information. For 

retrieval of LWL over small lakes we identify solutions based in new algorithms for SAR data. Both 

approaches are detailed in section 2.4.  
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Another separate consideration of retrieval performance is the calculation of relative biases when several 

satellites of different types of orbits are used over a given lake. When we use a series of satellites such 

as Topex / Poseidon, Jason-1/2/3, we collect data from the same orbit, so that the relative bias between 

each mission is well described and calibrated (see Cretaux et al. 2009, 2011, 2013, 2018, Bonnefond 

et al. 2018). When observations from different orbit are used, however, such as with Jason and Envisat 

or Jason and Sentinel-3, another bias is added. The instrumental biases are known, but since the tracks 

do not cover the same position over the lake, an additional bias due to geoid error must be considered. 

A very simple method was developed at LEGOS to correct for this additional bias. The LWL is calculated 

independently using each track, over the whole period, and during the overlapping period we interpolate 

the point measurement from each pass and calculate the average difference between all interpolate 

points. It then corresponds to the additional bias due to geoid errors.  

2.4 Future improvements for LWL 

We have planned three main future improvements.  

1. The LWL time series are based on long term time series of altimetry data. To achieve this goal, 

we process measurements from several satellites when it is possible. Currently the Topex / 

Poseidon, and Jason-1 are processed using only classical retracking based on the algorithm tuned 

for ocean-type waveform. For many lakes it is therefore not precise enough to be included in the 

products. The issue particularly concerns small and medium size lakes. In coordination with other 

projects and in accordance with the Hydroweb development plan, the waveform of these two 

satellites will be reprocessed using the so called OCOG retracking algorithms used for other 

missions and which gives better accuracy of the LWL time series. We expect to, first, increase the 

number of lakes within the database, and then to produce longer time series for existing lakes 

where only Envisat or Jason-2 / Jason-3 were processed. Length of time series of LWL is indeed 

essential in the framework of climate change studies, to detect climate signal within time series 

constrained by different types of periodic and non-periodic fluctuations.  

2. From another project also funded by ESA (FDR4ALT), CLS developed a new approach on old 

missions like Envisat or ERS-2 to better analyse the quality of the level-2 altimetry data (range, 

atmospheric corrections, backscatter). The objective is to have a better editing selection of 

measurements that are finally used in the calculation of LWL and to filter out spurious data in a 

more suitable manner than what was classically done. First results of this method are 

encouraging us to continue in this direction for these old mission (before altimeters are switched 

onto SAR mode with the sentinel ones). Several (~100) new time series using Envisat data (from 

2002 to 2010) have already been calculated, validated, and uploaded in Hydroweb and will 

contribute to increase the number of lakes in the CCI database. 

3. Recent missions such as Sentinel-3 provide SAR data. One of the main advantages is to improve 

the spatial resolution of the altimeter along the track. Using unfocused SAR processing 

techniques, the resolution is improved by an order of magnitude compared to previous altimeters. 

It allows small-scale features over lakes and rivers to be captured more frequently and more 

accurately, particularly when their orientation is perpendicular to the satellite track. In 2021 a 

new approach based on physical simulations considering the lake contour and the instrument 

characteristics has been analysed. The new algorithm developed at CNES and LEGOS for this 

purpose is call LPP (Lake Physical Processing). Fitting the simulation on the waveforms gives the 

water height. The algorithm has been tested on the sentinel-3A and Sentinel-3B time series over 

very small lakes in south of France and in Switzerland. Using in situ measurements we have 

shown that this new approach has allowed to gain a factor of 2 to 5 in terms of accuracy, 

compared to the classical data processing using retracking algorithm (Boy et al., 2022). We plan 

to use this new algorithm on small lakes with the sentinel missions for lakes where the current 

results are too noisy to be inserted within the CCI database so far. 

 

 

 . 
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3 Lake water extent - LWE 

 

3.1 Candidate algorithms for LWE 

Based on inter-comparison on a small set of lakes with increasingly complex hydromorphology, an 

approach based only on optical HR imagery was previously adopted to generate the LWE product. Water 

surfaces are extracted from images based on the exploitation of an in-house processing chain (Figure 1), 

named ExtractEO (Maxant et al, 2022). This software suite is also in use for Copernicus EMS, and for the 

supply of "water surface" reference plans for SWOT CalVAL globally.  

 

Figure 1: Optical Water Extraction Workflow 

The preprocessing steps correspond to:  

• Region Of Interest (ROI) is defined including the target lake. 

• Selection of set of images representative of the different water levels of the target. 

• Indices generation ‘AWEI, NDWI, MNDWI, NDI, SWIS which is a combination of indices)  

The processing then follows the scheme shown in Figure 2: 

• Automatic water sample generation from Global Surface Water. Water indices are computed to 

remove outliers and filter the training samples to the hydrological reality of the image (water 

extent, resolution) 

• Training using the Multi-Layer Perceptron classifier (optionally a Support Vector Machine (SVM) 

or Random Forest (RF) approach can be applied) 

• Slope and hillshade thresholds derived from HR DEMs are applied to refine the water extraction 

(post-processing) 

• Minimum mapping unit (MMU) sieving to remove small features (0,1 hectares in this case) 

• Water extent (in km2) is subsequently calculated using the sum of individual pixel classified as 

water pixel within the ROI 

• Generation of a max extent water mask 
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Figure 2: Detailed workflow of the water extraction procedure within ExtractEO 

3.2 Future improvements for LWE 

The method using SVM on optical imagery appears to provide a reliable and consistent approach despite 

sensitivity to cloud cover, and to a lesser degree, sunglint. 

The presence of sunglint on water surfaces can disrupt the process of recognising and extracting water 

bodies (Gao et la., 2023). The appearance of this phenomenon depends not only on the position of the 

sun, but also on the location of the target in the swath. In order to limit re-treatments (Harmel et al., 2018; 

Tavares et al., 2021) it would be beneficial to develop a sunglint flag. This would allow automatic 

adjustment of relevant coefficients and thresholds in the ExtractEO processing chain.  

Concerning cloud coverage, refinement of the existing cloud detector in the ExtractEO chain to provide a 

better cloud detection on the S2 L2A product, would be beneficial. This could be based in Machine 

Learning. The improved detection of clouds mask could be compared furthermore with such ancillary data 

as the SAFE mask from Colorado Boulder University or the Idepix procedure used within LWLR product 

generation. To address (small) cloud gaps, common water occurrence maps in databases such as GWS 

(Pekel et al. 2016) or GLAD (Pickens et al., 2022) might prove useful.  

3.3 LWE References 

Gao B-C, Li R-R. 2323. A Multi-Band Atmospheric Correction Algorithm for Deriving Water Leaving 

Reflectances over Turbid Waters from VIIRS Data. Remote Sensing. 2023; 15(2):425. 

https://doi.org/10.3390/rs15020425  

Harmel T., Chami M., Tormos Th, Reynaud N., Danis P.A., 2018.Sunglint correction of the Multi-Spectral 

Instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bands, Remote 

Sensing of Environment, 204, 308-321, https://doi.org/10.1016/j.rse.2017.10.022. 

Maxant J, Braun R, Caspard M, Clandillon S. (2022). ExtractEO, a Pipeline for Disaster Extent Mapping 

in the Context of Emergency Management. Remote Sensing. .14(20):5253. 

https://doi.org/10.3390/rs14205253 

Pekel JF, Cottam A, Gorelick N, Belward AS. 2016.High-resolution mapping of global surface water and 

its long-term changes. Nature. 2016 Dec 15;540(7633):418-422. doi: 10.1038/nature20584. 

https://doi.org/10.3390/rs14205253
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https://glad.umd.edu/publications/global-seasonal-dynamics-inland-open-water-and-ice
https://glad.umd.edu/publications/global-seasonal-dynamics-inland-open-water-and-ice
https://glad.umd.edu/publications/global-seasonal-dynamics-inland-open-water-and-ice
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4 Lake surface water temperature - LSWT 

4.1 Candidate algorithms for LSWT 

Surface temperatures from infrared observations are obtained by coefficient-based methods or optimal 

estimation (OE, Merchant and Embury 2014). Because of the varied altitudes of lakes and the large 

differences in atmospheric absorption associated with continentality, optimal estimation is the 

appropriate approach for LSWT estimation (MacCallum and Merchant, 2012).  

OE also provides comprehensive equations for uncertainty evaluation, on which basis uncertainty 

estimates are provided in LSWT products per datum.  

As well as retrieval, classification of which pixels are filled with water under clear skies is a necessary part 

of the LSWT processing. This is done by a “fuzzy logic” style approach in which several metrics with fuzzy 

thresholds are combined into a “water detection score” that contributes to the definition of the quality 

level attributed to the pixel. Bayesian cloud detection, as used for sea surface temperature, was also 

considered to identify clear-sky pixels but is heavily compromised in its current implementation for small 

lakes, where the spatial coherence of the temperature of the scene is not a good indicator of cloud (unlike 

in the centre of large lakes and over open ocean). Because of the user requirement to increase the 

number of measured lakes, the latter scheme is therefore currently inapplicable for the identification of 

clear-sky only water pixels.  

4.2 Future improvements for LSWT  

For version LSWT v5.0 (Lakes_cci v3): 

1. Inter-sensor consistency: The CDR will be made from seven sensors (2 ATSRs, MODIS, 2 AVHRRs 

and 2 SLSTRs) which have similar channels and nadir spatial resolution. Biases between sensor 

observations of a given lake arise because of relative calibration errors between sensors. Two 

steps will be applied. (New for v3.0) Calibration adjustments applied to brightness temperature. 

We are able to take advantage of bias-aware optimal estimation parameters obtained for AVHRRs 

within SST CCI (using plentiful ocean in situ data as an in-flight calibration reference). While not 

tuned for lakes, these will nonetheless reduce over-lake calibration biases. 

2. Including night-time observations: This is a high-risk high-reward objective given the number of 

sensors, the subtlety required for nighttime detection of clouds, and the small amount of funded 

effort for the attempt. Nonetheless, without guaranteeing success, Bayesian cloud detection 

(adapted again from SST CCI) will be applied on nighttime observations, based on developing a 

new climatology of LSWT from the CDR v2.0/2.1. If validation of the nighttime results justifies 

their inclusion in v3.0, this will approximately double the observation frequency for some lakes 

(not necessarily all).  

3. LSWT v5.0 will use ERA-5 for background numerical weather prediction information (except the 

lake surface water temperature which will be the climatology from CDR v2.1).  

Beyond LSWT v5.0: 

1. TRISHNA, which is planned to be launched in 2024, will offer measurements that are unique for 

LSWT coverage, quality and especially resolution, allowing to retrieve LSWT for smaller lakes with 

a higher frequency than the current high-resolution instruments which have low revisiting time 

(more than 15 days). 

2. The U. S. successor to MODIS and AVHRR is the VIIRS series, which will be excellent for LSWT 

coverage and quality. VIIRS data will be available at CEDA as a lite version and therefore 

potentially it would be very interesting to attempt to retrieve LSWT from VIIRS which offer a better 

resolution (700m) than the classic meteorological satellites. 

  



 

 

Lakes_CCI+ - Phase 2         D2.4. Algorithm Development Plan (ADP) 

Reference - Issue 2.1.1 – 17/10/2023  
Limited distribution/Diffusion limitée/Distribución limitada © 2019 CLS. All rights reserved. 

Proprietary and Confidential.  

 

13/23 

 

5 Lake water leaving reflectance - LWLR 

5.1  Candidate algorithms for LWLR 

Significant progress has been made in recent years in the field of water quality parameter retrieval, thanks 

to the extended operational period of OLCI (Ocean and Land Colour Instrument). New algorithms, ranging 

from machine-learning-based to semi-analytical and empirical approaches, have been developed. 

However, there remains a crucial need for an independent validation of water quality algorithms 

specifically designed for the OLCI sensor. In many cases, the same algorithms can still be applied to the 

Medium Resolution Imaging Sensors (MERIS), which was the focus of the previous algorithm selection 

and tuning exercise for sensors with this waveband set. For MODIS-Aqua, an algorithm selection and 

tuning exercise was completed in the previous version (2.x) of the Lakes_CCI.  

To address the need for algorithm re-evaluation for OLCI/MERIS, we anticipated comprehensive algorithm 

validation to feed into better optimised solutions in CRDP v3.0. This validation process will involve not 

only the inclusion of selected algorithms currently implemented in Lakes_cci  but also a collection of new 

algorithms targeting OLCI, published in recent years. 

A summary of the candidate algorithms for Chla and Turbidity/TSM relating to OLCI is given in Table 1.  

Table 1: Summary of candidate new Chla algorithms for OLCI 

Algorithm Architectural 

approach 
Formular Original 

training 

(mg.m-3) 

reference 

OC4_OLCI Blue-green 

ratios 
MBR=Rrs(443>490>510)/Rrs560 0.01 to 78 O'Reilly and Werdell 2019 

OC5_OLCI Blue-green 

ratios 
MBR=Rrs(413>443>490>510)/Rrs560 0.01 to 78 O'Reilly and Werdell 2019 

OC6_OLCI Blue-green 

ratios 
MBR=Rrs(413>443>490>510)/M(560&665

) 
0.01 to 78 O'Reilly and Werdell 2019 

OC4_MERIS Blue-green 

ratios 
MBR=Rrs(442>490>510)/Rrs560 0.01 to 78 O'Reilly and Werdell 2019 

OC5_MERIS Blue-green 

ratios 
MBR=Rrs(412>442>490>510)/Rrs560 0.01 to 78 O'Reilly and Werdell 2019 

OC6_MERIS Blue-green 

ratios 
MBR=Rrs(412>442>490>510)/M(560&665

) 
0.01 to 78 O'Reilly and Werdell 2019 

Optimized 

QAA for OLCI 
Semi-

analytical 
1. Modified reference band ( ) of 709 or 754 

nm in QAA Step 3: If MCI≤0.0016 choose 

709 nm, else 754 nm 
2. Modified  equation and η value in QAA 

Step 7 

5 to 100 Liu et al. 2020 

MDN Machine 

learning 
Mixed Density Network 0.2 to 1209 Pahlevan, Smith et al. 

2020, Pahlevan, Smith et 

al. 2021, Smith, Pahlevan 

et al. 2021 

Bayesian Bayesian 

probabilistic 

neural 

networks 

Bayesian Neural Network 0.05 to 68 Werther et al. 2022 

Smith18 Switched 

blending 

(G2B, OCI) 

G2B algorithm refers to Gilerson, Gitelson et 

al. (2010). OCI algorithm refers to combined 

CI (Chl<0.25) and OC4E (Chl>0.25) 

algorithms. 

0.43 to 309 (Smith, Lain et al. 2018) 
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Table 2: Summary of candidate new Turbidity/TSM algorithms for OLCI 

Algorithm Architectural 

approach 
Formular Original 

training (g.m-

3) 

reference 

SOLID20 MDN-based 

bbp inversion 
Classification based 0.1 to 

2626.8 
Balasubramanian et al. 

2020 

Jiang21 Semi-analytical Classification based 0.09 to 

2627 
Jiang et al. 2021 

Novoa21G Switch 

blending 
Linear-Green (TSM<10), Linear-Red 

(TSM 10~50), Poly-NIR (TSM>50) 
2.6 to 

1579.1 
Novoa et al. 2017 

Novoa21B Switch 

blending 
Linear-Green (TSM<10), Nechad et al. 

(2010) NIR (TSM 10~50), Nechad et al. 

(2010) NIR (TSM>50) 

17.8 to 

340.6 
Novoa et al. 2017 

Uudeberg2

0-clear 
Band ratios  0.5 to 215.2 Uudeberg et al. 2020 

Uudeberg2

020-

moderate 

Band ratios  0.5 to 215.2 Uudeberg et al. 2020 

Uudeberg2

0-Turbid 
Band ratios  0.5 to 215.2 Uudeberg et al. 2020 

Uudeberg2

0-

VeryTurbid 

Band ratios  0.5 to 215.2 Uudeberg, et al. 2020 

Uudeberg2

0-Brown 
Band ratios  0.5 to 215.2 Uudeberg et al. 2020 

ANTA21 

(Turbidity) 

 

(based on 

Nechad 2009, 

tuned for OLCI) 

T(red) was used if RW(red) < 0.05, and T(NIR) if 
 RW(red) > 0.07, with a linear blending in the 

transition. Red=665 nm, NIR=865 nm 

0.83 to 176 

FNU 
Nechad et al. 2009, 

Dogliotti, et al. 2015, 

Klein, et al. 2021 

*: ATA21 algorithm was developed for Turbidity 

5.2  Future improvements for LWLR 

As part of the Lakes_cci initiative, a new Calimnos processing chain is currently being developed, which 

includes anticipated updates in Idepix and Polymer. This update is expected to enhance the efficiency of 

LWLR processing, a requirement for any large-scale archive reprocessing in future.  

The updated Idepix is faster with OLCI and includes improved ice flagging. The forthcoming release of 

Polymer (v4.17) which is being assessed incorporates experimental processing modes specifically 

designed for OLCI in complex coastal and highly turbid inland waters. This version also includes several 

performance improvements, which are necessary due to the longer run-time associated with the 

enhanced application range of the algorithm.  

The Polymer upgrade encompass several key enhancements. Firstly, there is an optional 

parameterization of mineral absorption switching for Chl>10. Secondly, the first guess has been updated 

to test multiple initialisation points across the cost function, improving stability. Lastly, the inclusion of 

SWIR bands of 1020 for OLCI in bands_corr and bands_oc further improves algorithm stability. 

It is expected that the upgraded version of Polymer offers a solution to the issue of unrealistic spectral 

shapes with visible discontinuities across optical gradients, which has been a significant challenge in 

extremely turbid regions with previous product versions. Once a conclusive evaluation of the Polymer 

version update is reached, a comprehensive LWLR data reprocessing can be initiated. In that case, all 
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downstream water quality algorithms would require further validation and recalibration using the updated 

atmospheric correction results. 

5.3  LWLR References 

Balasubramanian, S. V., N. Pahlevan, B. Smith, C. Binding, J. Schalles, H. Loisel, D. Gurlin, S. Greb, K. 

Alikas and M. Randla (2020). Robust algorithm for estimating total suspended solids (TSS) in inland 

and nearshore coastal waters. Remote Sensing of Environment 246: 111768. 

Dogliotti, A. I., K. Ruddick, B. Nechad, D. Doxaran and E. Knaeps (2015). A single algorithm to retrieve 

turbidity from remotely-sensed data in all coastal and estuarine waters. Remote sensing of 

environment 156: 157-168. 

Gilerson, A. A., A. A. Gitelson, J. Zhou, D. Gurlin, W. Moses, I. Ioannou and S. A. Ahmed (2010). Algorithms 

for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. 

Optics Express 18(23): 24109-24125. 

Jiang, D., B. Matsushita, N. Pahlevan, D. Gurlin, M. K. Lehmann, C. G. Fichot, J. Schalles, H. Loisel, C. 

Binding and Y. Zhang (2021). Remotely estimating total suspended solids concentration in clear to 

extremely turbid waters using a novel semi-analytical method. Remote Sensing of Environment 258: 

112386. 
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algorithm for mapping of turbidity in coastal waters. Remote Sensing of the Ocean, Sea Ice, and Large 

Water Regions 2009, SPIE. 
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retrievals of phytoplankton absorption and chlorophyll-a in inland and nearshore coastal waters. 

Remote Sensing of Environment 253: 112200. 
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(2020). Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and 
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6 Lake Ice cover – LIC 

6.1 Candidate algorithms for LIC 

The candidate algorithm remains the random forest (RF) classifier and the development plan therefore 

focusses on improvements to the classification accuracy.  

As an ensemble approach, RF integrates decision trees developed by bagging samples to improve the 

limitations of the single-tree structure (Breiman, 2001). The bagging creates several subsets randomly 

from training samples with replacement (i.e. a sample can be collected several times in the same subset 

whereas other samples are probably not selected in this subset). Subsequently, each data subset is used 

to train a decision tree. For building a single tree, a random sample with several variables is chosen as 

split candidates from all variables. The number of variables available to a split is one of key RF 

hyperparameters, denoted as mtry. For the whole RF model, the number of trees (ntree) is defined a priori 

to develop various independent classifier outputs. The final class of each unknown sample is assigned 

by the majority vote of all outputs from the trees. 

RF has been found to outperform threshold-based approaches (e.g., NASA Snow product), two other 

machine learning algorithms (multinomial logistic regression, MLR, and support vector machine, SVM) 

and to provide comparable results to gradient boosting trees (GBT) for lake ice cover, open water and 

cloud classification (Wu et al., 2021). Training, testing and validation of the MLR, SVM, GBT and RF 

algorithms from 17 lakes and ice seasons across the northern hemisphere found that RF with a 

combination of visible, near infrared, and mid infrared bands was the best choice for LIC product 

generation; more specifically, MODIS Terra/Aqua Level 1B calibrated radiances product 

(MOD02/MYD02), Collection 6.1 (TOA reflectance data) stored in two separate files as a function of 

spatial resolution: MOD02QKM/MYD02QKM (250 m, bands 1-2) and MOD02HKM/MYD02HKM (500 m, 

bands: 3-4, 6-7). While RF and GBT provided similar results following a comprehensive accuracy 

assessment (cross validation (CV): random k-fold as well as spatial and temporal CV), the former was 

selected for LIC product generation since it was determined to be less sensitive to the to the choice of 

hyperparameters necessary for classification compared to GBT, MLR and SVM. High overall accuracy 

(>95%) has been achieved with the RF classifier in both spatial and temporal transferability assessments 

(Wu et al., 2021). 

6.2 Future improvements for LIC 

As with any lake product generated from optical data, the presence of clouds as well as extensive cloud 

cover periods and low solar illumination angles, particularly during the fall freeze-up at high latitudes, 

introduce classification errors and limit the retrieval of open water and ice cover for many days of the 

year. In LIC v2.1, highly turbid lakes or sections of lakes have been found to occasionally be misclassified 

as ice-covered during the open water season. This is also the case for a few lakes that are characterized 

by snow-free blue clear ice during spring break-up; here ice is misclassified as open water. Also, one 

limitation of the LIC product is that no retrieval is performed when the solar zenith angle is >85 degrees; 

a limitation due to the use of MODIS shortwave bands that record very low surface reflectance during ice 

formation late fall and wintertime. 

Given the above limitations, future improvements of the RF classifier and its related processing chain 

leading to the release of CRDP v3.0 will include:  

(1) Enhancement of classification accuracy (product quality) via collection of a more extensive 

training dataset than that used in previous algorithm versions 

(2) provision of better uncertainty estimates (pixel-level estimation of aleatoric, epistemic and total 

uncertainty; Saberi et al., in prep.) and quality flags beyond simple overall class accuracy reported 

in earlier CRDP releases 
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(3) revised label (class) aggregation, beyond the simple majority-vote approach currently used, from 

multiple satellite overpasses to daily product based on outcomes of (1) and (2). 

 

6.3 LIC References 

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. doi: 

10.1023/A:1010933404324.  

Saberi, N., C.R. Duguay, E. Hüllermeier, K.A. Scott, and M. H. Shaker (In preparation). Uncertainty 

estimation of lake ice cover maps from a random forest classifier using MODIS TOA reflectance data. 

Wu, Y., Duguay, C.R. & Xu, L. (2021). Assessment of machine learning classifiers for global lake ice 

cover mapping from MODIS TOA reflectance data. Remote Sensing of Environment, 253, 112206, 

doi: 10.1016/j.rse.2020.112206. 
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7 Lake Ice Thickness- LIT 

7.1 Candidate algorithms for LIT 

The number of studies investigating the potential of satellite remote sensing data for the estimation of 

LIT has been limited to date. Kang et al. (2010) first showed brightness temperature (Tb) measurements 

from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) at 18.7 GHz frequency (V 

polarization) to be highly sensitive (R2 = 0.91) to the seasonal evolution of ice thickness on Great Bear 

Lake (GBL) and Great Slave Lake (GSL), Canada. Based on this finding, Kang et al. (2014) proposed 

empirical (linear regression) equations to estimate LIT for the two lakes using 18.7 GHz V-pol data (2002-

2009), achieving a mean bias error (MBE) of 0.06 m and root mean square error (RMSE) of 0.19 m when 

compared to in situ measurements. Surface temperature observations of snow-covered lake ice from the 

Moderate Resolution Imaging Spectroradiometer (MODIS) have also been assessed for the estimation of 

LIT. Using heat balance terms and snow depth derived from the Canadian Lake Ice Model (CLIMo, Duguay 

et al. 2003), Kheyrollah et al. (2017) retrieved ice thicknesses up to ∼ 1.2 m from MODIS (2002-2014) 

with an RMSE of 0.17 m and MBE of 0.07 m when comparing LIT values from single pixels (1 km x 1 km) 

to those from close by near-shore field measurements collected on GSL and Baker Lake, Canada.  

Beckers et al. 2017 analyzed waveforms from CryoSat2 (CS2) Ku-band synthetic aperture radar (SAR) 

altimetry for the estimation of LIT on the Great Bear Lake and Great Slave Lake. By exploiting the 

increasing distance between peak radar returns from the snow-ice and ice-water interfaces on the leading 

edge of waveforms with ice growth, the authors estimated ice thickness empirically with RMSE < 0.33 m 

when compared to in situ measurements from the same near-shore location on GSL as in previous 

investigations. While data from CS2 show strong potential for the retrieval of LIT, the drifting orbit of the 

satellite makes it difficult to build a geographically precise time series of LIT measurements (i.e., repeated 

along the same tracks over the lifetime of the satellite) required for climate monitoring. Also, the LIT 

retracker algorithm developed in Beckers et al. (2017) relies on the empirical thresholding of the radar 

waveforms that is hard to generalize to follow the LIT evolution, in particular at the seasonal transitions, 

and can lead to biases and sub-optimal LIT estimates.  More recent studies, e.g., Shu et al. (2020), Yang 

et al. (2021), have estimated LIT with radar altimetry data, more specifically from Sentinel-3 and Jason-

3 missions, in the context of lake water level analysis, as the presence of lake ice has been shown to 

introduce a bias on winter water level measurements. These studies also used empirical methods based 

on already existing retrackers that are not specifically designed for the estimation of LIT. To overcome 

these limitations, Mangilli et al. (2022) developed a novel physically-based retracking algorithm, the 

LRM_LIT retracker, founded on the exploitation of the Ku band radar waveforms data in Low Resolution 

Mode (LRM) data specifically tailored for the retrieval of LIT. The advantage of a physically-based and 

analytical retracker is that it does not rely on empirical or by-hand settings, allowing to derive robust and 

continuous LIT estimates over different target lakes and LRM radar altimetry missions, making the 

LRM_LIT algorithm the suitable tool to build robust and long LIT timeseries for climate monitoring. The 

LRM_LIT retacker is the algorithm currently being implemented in the lakes_cci LIT processor. 

7.2 Future improvements for LIT 

The LIT analysis currently scheduled for Phase2 is based on the LRM_LIT algorithm (developed in Phase 

1), tailored to detect the LIT signature on the Low Resolution Mode (LRM) Ku band waveforms. While this 

method provides with a significant improvement with respect to current LIT constraints, the accuracy of 

the LIT retrievals could be further improved by performing the LIT analysis with Ku radar waveform data 

at higher resolution, namely, UnFocused SAR andFullyFocused SAR data. This would imply to change the 

LIT analytical model as the SAR waveforms and the associated LIT signature over iced covered lake is 

different from the Low Resolution Mode (LRM) waveforms. An R&D study on the development and 

validation of the analytical based LIT retracker for SAR data (SAR_LIT retracker, Mangilli et al. 2023, in 

prep.) is ongoing within the S6JTEX ESA project and its use to process SAR data for LIT analysis could be 

timely to be considered for future improvement of the CCI-Lakes LIT products. 
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Appendix A - List of Acronyms 

AATSR Advanced Along Track Scanning Radiometer 

AATSR Advanced Along Track Scanning Radiometer 

AERONET-OC Aerosol Robotic NETwork – Ocean Color 

AMI Active Microwave Instrument 

AMSR-E Advanced Microwave Scanning Radiometer for EOS 

APP Alternating Polarization mode Precision 

ASAR Advanced Synthetic Aperture Radar 

ASLO Association for the Sciences of Limnology and Oceanography 

ATBD Algorithm Theoretical Basis Document 

ATSR Along Track Scanning Radiometer 

AVHRR Advanced very-high-resolution radiometer 

BAMS Bulletin of the American Meteorological Society 

BC Brockman Consult 

C3S Copernicus Climate Change Service 

CCI Climate Change Initiative 

CDR Climate Data Record 

CDOM Coloured Dissolved Organic Matter 

CEDA Centre for Environmental Data Archival 

CEMS Centre for Environmental Monitoring from Space 

CEOS Committee on Earth Observation Satellites 

CGLOPS Copernicus Global Land Operation Service 

CIS Canadian Ice Service 

CLS Collecte Localisation Satellite 

CMEMS Copernicus Marine Environment Monitoring Service 

CMUG Climate Modelling User Group 

CNES Centre national d’études spatiales 

CNR National Research Council of Italy 

CORALS Climate Oriented Record of Altimetry and Sea-Level 

CPD Communication Plan Document 

CR Cardinal Requirement 

CRG Climate Research Group 

CSWG Climate Science Working Group 

CTOH Center for Topographic studies of the Ocean and Hydrosphere 

DOC Dissolved Organic Carbon 

DUE Data User Element 

ECMWF European Centre for Medium-Range Weather Forecasts 

ECV Essential Climate Variable 

ELLS-IAGRL European Large Lakes Symposium-International Association for Great Lakes Research  

ENVISAT Environmental Satellite 

EO Earth Observation 

EOMORES Earth Observation-based Services for Monitoring and Reporting of Ecological Status 

ERS European Remote-Sensing Satellite 

ESA European Space Agency 

ESRIN European Space Research Institute 

ETM+ Enhanced Thematic Mapper Plus 

EU European Union 

EUMETSAT European Organisation for the Exploitation of Meteorological Satellites 

FAQ Frequently Asked Questions 

FCDR Fundamental Climate Data Record 
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FIDUCEO Fidelity and Uncertainty in Climate data records from Earth Observations 

FP7 Seventh Framework Programme 

GAC Global Area Coverage 

GCOS Global Climate Observing System 

GEMS/Water Global Environment Monitoring System for freshwater 

GEO Group on Earth Observations 

GEWEX Global Energy and Water Exchanges 

GloboLakes Global Observatory of Lake Responses to Environmental Change 

GLOPS Copernicus Global Land Service 

GTN-H Global Terrestrial Network – Hydrology 

GTN-L Global Terrestrial Network – Lakes 

H2020 Horizon 2020 

HYDROLARE International Data Centre on Hydrology of Lakes and Reservoirs 

ILEC International Lake Environment Committee 

INFORM Index for Risk Management 

IPCC Intergovernmental Panel on Climate Change 

ISC International Science Council 

ISO International Organization for Standardization 

ISRO Indian Space Research Organisation 

JRC Joint Research Centre 

KPI Key Performance Indicators 

LEGOS Laboratoire d'Etudes en Géophysique et Océanographie Spatiales 

LIC Lake Ice Cover 

LIT Lake Ice Thickness 

LSC Lake Storage Change 

LSWT Lake Surface Water Temperature 

LWE Lake Water Extent 

LWL Lake Water Level 

LWLR Lake Water Leaving Reflectance 

MERIS MEdium Resolution Imaging Spectrometer 

MGDR Merged Geophysical Data Record 

MODIS Moderate Resolution Imaging Spectroradiometer 

MSI MultiSpectral Instrument 

MSS MultiSpectral Scanner 

NASA National Aeronautics and Space Administration 

NERC Natural Environment Research Council 

NetCDF Network Common Data Form 

NOAA National Oceanic and Atmospheric Administration 

NSERC Natural Sciences and Engineering Research Council 

NSIDC National Snow & Ice Data Center 

NTU Nephelometric Turbidity Unit 

NWP Numerical Weather Prediction 

OLCI Ocean and Land Colour Instrument 

OLI Operational Land Imager 

OSTST Ocean Surface Topography Science Team 

PML Plymouth Marine Laboratory 

PP Payment Plan 

PRISMA PRecursore IperSpettrale della Missione Applicativa 

Proba Project for On-Board Autonomy 

QSR Quarterly Status Report 

R Linear Correlation Coefficient 

RA Radar Altimeter 

RMSE Root Mean Square Error 
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SAF Satellite Application Facility 

SAR Synthetic Aperture Radar 

SeaWIFS Sea-viewing Wide Field-of-view Sensor 

SIL International Society of Limnology 

SLSTR Sea and Land Surface Temperature Radiometer 

SoW Statement of Work 

SPONGE SPaceborne Observations to Nourish the GEMS 

SRD System Requirements Document 

SSD System Specification Document 

SST Sea Surface Temperature 

STSE Support To Science Element 

SWOT Surface Water and Ocean Topography 

TAPAS Tools for Assessment and Planning of Aquaculture Sustainability 

TB Brightness Temperature 

TM Thematic Mapper 

TOA Top Of Atmosphere 

TR Technical Requirement 

UNEP United Nations Environment Programme 

UoR University of Reading 

UoS University of Stirling 

US United States 

VIIRS Visible Infrared Imaging Radiometer Suite 

WCRP World Climate Research Program 

WHYCOS World Hydrological Cycle Observing Systems 

WMO World Meteorological Organization 

WP Work Package 
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