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1. Introduction 
 
This document presents the Product Validation Plan (PVP) for ​Sea_State_cci​, deliverable           
2.5 of the project. It describes the validation approach, and lists reference data sets to be                
used in the validation of the Sea State Climate Research Data Product. 
 
Further sections of the document are structured as follows: 
 
Section 2 describes validation methodology focusing on the Triple Collocation Technique. 
Section 3 presents the sources of validation data. 
Section 4 describes the validation approach for the altimetry Round Robin process. 
Section 5 refers to the activity of validation and User Assessment and its reporting. 
 
A further report, the In Situ Database Report, will be prepared in Autumn 2019 and will                
elaborate on section 3 and present details of available data. 
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2. Validation methodology / diagnoses 
As no Reference wave measurements can be considered error free, we propose, in the              
frame of the Sea State ECV to use the triple collocation technique that allows to evaluate the                 
ECV uncertainty, even in the presence of reference measurement error. Additionally, the            
validation will be performed by independent intercomparison of the satellite measurements           
to all individual collocated validation datasets. 

2.1 Triple Collocation Technique (TCT) 

2.1.1 Introduction to TCT 

Geophysical measurements can be verified by comparing against a reference such as in-situ             
(also termed here as buoy) observations and the output of Numerical Weather Prediction             
(NWP) models like the Integrated Forecasting System (IFS) of European Centre for            
Medium-Range Weather Forecasts (ECMWF). However, this type of verification does not           
provide proper error estimates for use in various applications like data assimilation which is              
very important for the success of weather forecasting. In-situ sea-state measurements are            
often considered as the proper reference for verification. Irrespective of the accuracy of this              
statement, their limited availability at few locations mainly around the European and            
American coasts makes any verification to be of limited applicability. The global NWP             
models, on the other hand, provide an attractive alternative for verification due to their global               
coverage. It is important to stress that both in-situ observations and model prediction contain              
errors. 
 
A “measurement error” can be defined as the deviation of the measurement from the truth.               
Unless under controlled conditions, the geophysical truth is usually unknown and hence the             
error. There are several causes of errors some are related to the instrument used for the                
measurement (hereafter the term “instrument” is used to refer to a measuring device, a              
prediction model or any measurement tool) like inaccuracy, noise and deficiencies in the             
principle of measurements and some due to ambient conditions which are not accounted for.              
Other sources of errors like human errors or communication errors are difficult to deal with               
and are ignored here. Estimating errors in individual measurements is usually very close to              
impossible due to the randomness factor they involve. However, statistical description of            
errors is possible. 
 
If a given truth was to be measured using the same instrument a large number of times we                  
end up with a probability distribution typically similar to that given in ​Figure 1 (the shape of                 
the distribution is irrelevant to the discussion hereafter). The errors can be classified into two               
categories:  
 

1. bias error which is a systematic error that defines the accuracy of the instrument, and  
2. random error which defines the precision of the instrument. 
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Figure 1:​  ​Typical error distribution (the shape of the distribution is irrelevant). 

Quantifying the “absolute bias” of a measurement is not possible due to the absence of a                
standard reference. Buoys or other in-situ instruments may serve as the standard reference             
since they are usually subject to proper calibration. Although this may be correct under              
controlled environmental conditions like laboratories, it is usually not the case in the open              
ocean with harsh atmospheric and marine conditions. For example, it was found that             
significant wave height (SWH) measurements from different ​in-situ instruments (buoys and           
platforms) do not necessarily provide consistent results. In particular, a systematic 10% bias             
was identified between the US and the Canadian buoy networks (Bidlot et al., 2008). Due to                
the absence of any other options, however, ​in-situ measurements are generally accepted as             
the standard reference as far as the bias is concerned. 
 
The variance of the “random error” can be estimated even in the absence of an absolute                
truth. Triple collocation technique (TCT), which was proposed by Stoffelen (1998) and was             
improved later by several researchers like Zwieback et al. (2012), has been used for this               
purpose during the last two decades. This technique can be summarised as follows: given              
three independent estimates of the truth, ​T​, with unknown random errors it is possible to               
show that the error variance in each estimate can be found using the total (co-)variances of                
the three data sets in addition to the “unknown” covariances of the errors. Further              
assumptions are needed to estimate the error covariances. The assumption of uncorrelated            
errors, for example, nullifies the error covariance terms. If this assumption is not correct, the               
error estimates will not be correct. It is also important to note that although the errors in two                  
data sets may not be correlated directly, it may be possible to have a pseudo-correlation due                
to the nonlinear nature of both errors (e.g. Janssen et al., 2007).  
 
Stoffelen (1998) was the first to apply TCT to estimate the errors of wind measurements from                
ERS-1 scatterometer, buoys and model analysis. Caires and Sterl (2003) used the same             
technique to estimate the errors in the 40-year ECMWF Re-Analysis (ERA-40) surface wind             
speed and significant wave height. Tokmakian and Challenor (1999) implemented the           
technique to estimate the mean sea level anomalies from the model, ERS-2 and             
TOPEX/Poseidon altimeters. Freilich and Vanhoff (1999) and Quilfen et al. (2001) used a             
similar approach with an assumption that the true wind speed is Weibull distributed. Janssen              
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et al. (2007) estimated significant wave height errors in ERS-2, buoy and ECMWF model              
analysis, background and hindcast. They extended the method to include two extra sources             
of information, i.e. quintuple collocation, to estimate the covariances due to existence of             
correlations between the errors in ERS-2 and Envisat observations. This was the way out to               
estimate the errors in Envisat RA-2 wave heights in a collocation data set that involves               
ERS-2 data and model background data. Triple collocation technique was also used by             
Abdalla and Janssen (2007) to estimate the error of the total column water vapour from the                
microwave radiometers on board Envisat and Jason-1 as well as the Medium-Resolution            
Imaging Spectrometer (MERIS) on board Envisat and the ECMWF model analysis. Abdalla            
et al. (2011a and 2011b) carried out a systematic evaluation of the surface wind speed and                
SWH from three radar altimeters, buoys and model predictions. The technique was also             
used in other fields like soil moisture (Scipal et al., 2008; Gruber et al., 2016; and Yilmaz and                  
Crow, 2014); sea surface temperature (O’Carroll et al., 2008) and near-surface humidity            
(Kinzel et al., 2016). McColl et al. (2014) extended the technique to provide an estimation of                
the correlation coefficient of the measurement systems with respect to the unknown truth.             
Furthermore, Zwieback et al. (2016) extended the approach to account for quadratic            
relationships. 

2.1.2 Derivation of TCT 

The following derivation is based on Abdalla and De Chiara (2017). 
 
Consider three measuring systems ​X​j​, ​j​=1, 2, 3 (e.g. altimeter, in-situ/buoy and model)             
measuring the same truth at several locations and instants of time. Each raw measurement              
X​r​ji can be related to the truth ​T​i , with ​i runs from 1 to ​N​, using an approximate linear error                     
model in the following form: 
 
X​r​ji​ = ​α​j​ + ​β​j​ T​i​ + ​e​ji  (1) 
 
where ​X​r​ji is the ​i​th measurement taken by measuring system ​j​, ​α​j is the fixed bias in system ​j​,                   
β​j is the (mis-)calibration factor of system ​j​, ​T​i is the ​i​th (unknown) truth being measured by                 
the three systems, ​e​ji​ is the random error in the ​i​th​ measurement done by system ​j​. 
 
Contrary to expectations, estimating the absolute fixed bias, ​α​j​, in systems measuring            
quantities like significant wave height is usually non-trivial (except under very controlled            
laboratory environments). Therefore, it is usually estimated with respect to an arbitrary            
reference level. There are three possible choices for the reference: using a standard             
reference, selecting one of the systems as the reference, or adjusting the three systems so               
that they have the same mean (leading to a zero relative-bias in each system). In order to                 
avoid the complications that can be caused by the biases, the last option can be selected.                
This choice does not affect the random error estimate, which is the focus of this part. 
 
The calibration factor, ​β​j​, is estimated, in relative sense, using the iterative procedure             
suggested by Janssen et al. (2007). By removing the bias and using the calibration factor at                
each iteration, (1) can be written as: 
 
X​ji​ = ​T​i​ + ​e​ji  (2) 
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where ​X​ji is the unbiased and calibrated version of the raw measurement ​X​r​ji​. Expressing the               
measurements of the three systems using (2) and writing the mean squares of the              
differences between each pair of measurements, one can easily write three equations in the              
form: 
 
N​-1​ Σ (​X​ji​ – ​X​ki​ )​

2​  = ​N​-1​ Σ (​e​ji​ ​–​ e​ki​ )​
2 (3) 

 
Here, ​N is the number of collocation triplets and the summation is done over all collocations.                
Eq. (3) is repeated three times for pairs of ​j and ​k (1 and 2; 1 and 3 and finally 2 and 3).                       
Using the notation:  <​X​> ≡ ​N​-1​ Σ (​X​i​); Eq. (3) can be written for systems ​j​ and ​k​ as: 
 
<​X​j​

2​> – 2 <​X​j​ X​k​> + <​X​k​
2​> = <​e​j​

2​> – 2 <​e​j​ ​e​k​> + <​e​k​
2​> (4) 

 
Again (4) represents three equations by repeating ​j and ​k for the pairs: (1,2), (1,3) and (2,3).                 
<​X​j​

2​>, ​j​=1, 2, 3 are the measurement variances of the three systems, and <​X​j X​k​> are the                 
measurement covariances (three of them). Similarly, <​e​j​

2​> and <​e​j ​e​k​> are the error             
variances and covariances, respectively. The former group are known from the statistics of             
the collocated triplets while the latter are unknowns. 
 
Solving for the error variances and rearranging: 
 
<​e​1​

2​> = <​X​1​
2​> – <​X​1​ X​2​> – <​X​1​ X​3​> + <​X​2​ X​3​> + < ​e​1​ ​e​2​> + < ​e​1​ ​e​3​> – <​ e​2​ ​e​3​> (5) 

<​e​2​
2​> = <​X​2​

2​> – <​X​1​ X​2​> – <​X​2​ X​3​> + <​X​1​ X​3​> + <​ e​1​ ​e​2​> + < ​e​2​ ​e​3​> – <​ e​1​ ​e​3​> (6) 
<​e​3​

2​> = <​X​3​
2​> – <​X​2​ X​3​> – <​X​1​ X​3​> + <​X​1​ X​2​> + <​ e​2​ ​e​3​> + < ​e​1​ ​e​3​> – <​ e​1​ ​e​2​> (7) 

 
Note that the first 4 terms (in capital letters) on the right-hand side of (5)-(7) are known from                  
the statistics of the collocated triplets while the last three (the error covariances which have               
the letter ​e in them) are unknowns. So there are three equations (5)-(7) with six unknowns:                
the error variances on the left hand side and the error covariances on the right hand side. 
 
Considering two data sets ​x​i and ​y​i with ​i ​= 1, 2,..., ​N that have zero means, the Pearson                   
correlation coefficient between the two data sets is defined as: 
 
r​2​ = <​x​ ​y​>​2​ / (<​x​2​> <​y​2​>) (8) 
 
Therefore, the covariance <​x ​y​> can be interpreted as a measure for the correlation between               
the two data sets. 
 
Assuming that the random errors in the three measuring systems are uncorrelated (i.e. all              
the error covariances are zeros), the number of unknowns in the system of equations              
defined in (5)-(7) reduces to three which are the error variances that appear on the left-hand                
side of the three equations. The solution is straightforward. 

2.1.3 Suggested Procedure 

A flowchart of the iterative procedure suggested originally by Janssen et al. (2007) and              
modified later by Abdalla et al. (2013) is shown in Figure 1. The procedure assumes that one                 
of the systems (say the first one, ​X​1​) is calibrated (i.e. ​β​1 ​= 1). The other two systems need                   

 
 Public document  8 
 



LOPS and CCI_Sea_state Team      CCI+ Phase 1: Sea_State_cci: PVP

 

to be calibrated (i.e. To find ​β​2 and ​β​3​) accordingly. Any of the three systems can be                 
assumed to be calibrated but the final calibration factors of the other two systems will be                
relative to the selected system. Therefore, one needs to select the one which is believed to                
be well calibrated. This selection does not impact the estimated random errors. 
The iteration starts by assuming that the calibration factors of the other two systems equal to                
1. The error variances <​e​1​

2​>, <​e​2​
2​> and <​e​3​

2​> are computed using (5)-(7). 
 
The neutral regression (e.g. Marsden, 1999) is used to compute the calibration factors.             
Conventional regression is not suitable as it assumes that one of the measuring systems is               
error-free. This almost impossible in real work measurements. The calibration factor of the             
second system  ​β​2​  is computed using: 
 
β​y​ = [–​B​ + (​B​2​ – 4 ​A​ ​C​)​1/2​] / 2 ​A (9) 
 
where: 
 
A​ = ​γ​ 〈​X​1​ ​X​2​ ​〉 ;           (10) 
B ​= 〈​X​1​

2​〉 – ​γ​ 〈​X​2​
2​〉 ;            (11) 

C​ = – 〈​X​1​ ​X​2​〉 ; and           (12) 
γ​  = 〈​e​1​

2​〉 / 〈​e​2​
2​〉            (13) 

 
Similarly, ​β​3 can be found by replacing ​X​2 above with ​X​3​. The changes in the values of the                  
calibration factors ​β​2 and ​β​3 are tested against a given tolerance. If the change is large,                
the procedure is repeated with the new values of the calibration factors. Otherwise, the              
procedure is terminated by adjusting the estimated error variances to account for the             
collocation distance (see Paragraph e of Subsection 2.1.4). 

 
 Public document  9 
 



LOPS and CCI_Sea_state Team      CCI+ Phase 1: Sea_State_cci: PVP

 

 

Figure 2:​  ​Flow chart of the procedure to implement the TCT. 

2.1.4 Practical Considerations 

a) Handling error correlations 

The error correlations which are represented by the error covariances in the three equations              
(5)-(7) are usually not known. The best strategy is to carefully select the three data sets with                 
errors that are independent from errors of the other two. Sometimes it is possible to select or                 
design three measuring systems with uncorrelated random errors (Zwieback et al., 2012).            
Janssen et al. (2007) used quadruple and quintuple collocations to handle the error             
correlations between ERS-2, ENVISAT and the wave model. Gruber et al. (2016) and             
Zwieback et al. (2012) developed methods to account for error correlations that are specific              
to the soil moisture. Abdalla and De Chiara (2017) avoided error correlations due to              
assimilating scatterometer wind data into ECMWF NWP model by considering model           
forecasts at medium ranges. However, this is not always possible especially for historical             
data sets and for expensive-to-conduct data sets. 
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It is important to stress that the correlation of concern is the “error correlation” not the                
“measurement correlation”. The measurements of any two systems are highly correlated but            
this does not mean that their errors are correlated. Examples for possible reasons to have               
error correlations between two measuring systems can be: 
 

● If the two measuring systems share the same principles of measurement, the            
assumptions used and the processes that are unaccounted for while making the            
measurements cause considerable amount of error correlation. For example, Jassen          
et al. (2007) showed that ERS-2 and ENVISAT radar altimeter SWH measurements            
have significant error correlations. 

● Use of data from one system in calibrating the retrieval algorithm of the second              
system also introduces a considerable amount of error correlation. 

● If one of the systems assimilates the measurement of the second system (e.g. as in               
the case of NWP system), this is another source of error correlation. 

 
If one of the system triplets is a model, especially in the case of NWP models, error                 
correlation is a serious issue. NWP models assimilate a large number of measurements             
coming from a wide range of measuring systems. Furthermore, NWP model fields are             
considered an attractive source of data for developing retrieval algorithms or for instrument             
calibration. In order to eliminate the impact of error correlation in this context, it is possible to                 
use the following treatments: 
 
1. use other methods or prior knowledge to evaluate or estimate the error correlations; 
2. use of the model forecasts at medium-ranges rather than the model analysis or             
model forecasts at short ranges. For assimilated observations the correlation between the            
errors of the model and the other system decreases with the increase in the forecast lead                
time;  
3. conduct numerical experiments where the model is run without assimilating the data            
from the systems used in the triple collocation. This blacklisting should extend to other              
systems which can be correlated with the systems under concern. However, the results             
related to model error will then not represent the errors in the full NWP system;  
4. use of additional measurement systems and perform quadruple, quintuple, etc.          
collocation techniques.  
 

b) Representativeness Error 

The representativeness error which emerges due to scale differences among various           
measuring systems is usually an issue for triple collocations as well as for direct              
comparisons (see for example Stoffelen, 1998 and Vogelzang et al., 2011). If one of the               
systems is able to resolve finer scales compared to the others, triple collocation penalises it               
and accounts the sensed actual small-scale variability as an additional error. There are             
several ways to deal with the representativeness error either by using assumptions based on              
the understanding of the systems as in Stoffelen (1998) or by performing spectral analysis              
as in Vogelzang et al. (2011). In order to avoid this issue, the scales of the three measuring                  
systems are brought to same level. Measurement system with the coarsest scale dictates             
the selected scale for all systems. Averaging is used to “coarsen” the scale of finer systems.                
The term “scale” here is used to refer to the effective resolution or the ability of the                 
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measuring system to resolve true variations. The scale is usually higher than the resolution,              
discretization or sampling interval/spacing due to internal correlations. In case of ECMWF            
IFS numerical model, for example, the TL1279 model grid spacing is 16 km but its intrinsic                
effective resolution (scale) can be between 4 to 8 grid spacings (which is equivalent to               
60-125 km) depending on the accepted level of “resolution” (Abdalla et al., 2013c).  
 
Radar altimeters sample the sea surface at a typical rate of several hundreds of pulses per                
second (e.g. more than 1700 pulses per second for Jasons). An on-board averaging reduces              
this rate to about 20 Hz. Further processing produces 1-Hz products sampled every 6-7 km               
which are traditionally made available to the users. Details can be found in Chelton et al.                
(2001). Janssen et al. (2007), Abdalla et al. (2011a and b) and Abdalla and De Chiara                
(2017) average the 1-Hz products, which has a typical scale of 6-8 km (slightly larger than                
the sampling interval), along the track to give a scale of about 75-100 km to be comparable                 
to the IFS effective resolution. 
 
For in-situ data, measurements are carried out temporally at individual locations. The spatial             
scale as such does not have any physical meaning. Using Taylor’s hypothesis, it is possible               
to relate spatial scales to the temporal scales using the mean velocity of the flow. In the case                  
of wind waves, the typical wave period is 8 seconds (frequency of 0.125 Hz). The group                
velocity, which represents the mean flow velocity of the wave energy, is slightly higher than 6                
m/s which is about 22 km/hr. The scale of 100 km is equivalent to about 4.5 hours.                 
Therefore, most of verification studies that involve NWP and in-situ data adopt 5-hour             
averaging of in-situ data. 
 
If data sets involved in the TCT are all roughly of the same scale, the representativeness                
error becomes less of an issue. However, the error estimates are valid only for that specific                
scale. 
 

c) Biases 

As discussed earlier, biases cannot be found in absolute sense. However, large bias             
differences among the three measuring systems confuse the TCT and the resulting error             
estimates will be wrong. In the absence of the truth or an unbiased measuring system, all                
data systems should be brought to the same level. This can be done by adopting one of the                  
three data sets as the reference. The other two data sets are bias corrected with respect to                 
the reference data set. 
 
Another option is to adjust each data set by subtracting its mean from each measurement in                
that set. The mean of each adjusted data set becomes zero. 
 

d) Calibration Factors 

After assuming that one of the measurement systems is well calibrated, the calibration             
factors of the other two systems are estimated using an iterative procedure as proposed by               
Janssen et al. (2007) as already mentioned above in Sub-section 2.1.3 and depicted in              
Figure 2. On the other hand, Su et al. (2014) derived several formulae to evaluate the                
calibration factors (they call them scaling coefficients). In particular, they derived a formula             
for triple collocation (their Eq. 13) which can be written as: 
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β​2​ ​= cov(​X​2​ , ​X​3​) / cov(​X​1​ , ​X​3​)  (14) 
 
where cov(​x​,​y​) is the covariance operator. The results of (14) were found to coincide (within               
5 significant digits) with the calibration factors computed iteratively as suggested by Janssen             
et al. (2007). 
 

e) Number of Collocations and the Impact of the Collocation Distance 

Usually in-situ data are used as one of the triplets in TCT. For sea-state measurements there                
is a limited number of measuring stations scattered mainly around Europe and North             
America. The collocated altimeter and buoy measurements should be very close to each             
other to represent the same truth and, at the same time this restriction should be relaxed to                 
have enough triplets to yield statistically representative error estimates. If restrictive criteria            
for the collocation are applied without allowing any tolerance in space and time, the number               
of the triplets would be too small to provide representative error statistics. Abdalla et al.               
(2013b) showed that over a whole year, restricting the collocation distance between altimeter             
measurements (ENVISAT, Jason-1, or Jason-2) and in-situ measurements to below 50 km            
reduces the number of collocation significantly to a dozen of hundreds as can be seen in                
Figure 3. 
 
Janssen et al. (2007) suggested the use of a relaxed collocation distance of 200 km and                
time difference of 2 hours. To ensure that the triplet measure the same truth restrictions on                
the model predictions are imposed. Their collocation procedure is very simple in a sense              
that any altimeter measurement within 200 km from a buoy location is collocated with the               
buoy measurement (within 2 hours). If there is a large gradient or discontinuity of the SWH                
between the locations of the two measurements, the “natural” difference between them will             
be interpreted as an additional error that cannot be separated from the random error. For               
example, if the buoy is located at one side of an island or a peninsula while the altimeter                  
track is at the other side, for sure both measurements will not be representing the same                
truth. To eliminate, as much as possible, this kind of added error, any triplet is rejected                
when the model estimates at the altimeter location and at the buoy location differ by more                
than 5%. The assumption here, which is a fair one, is that the model is able to reproduce                  
the true geophysical variability. Therefore, too different “model” SWH values is a strong             
indication that the altimeter and the buoy measurements do not represent the same             
geophysical truth. Furthermore, any triplet with the model mean wave direction at the             
altimeter and at the buoy locations are different by more than 45 degrees is rejected. This is                 
another measure intended to filter out the field inhomogeneities due to, for example,             
atmospheric fronts. It should be noted that in the criteria mentioned above, the 5% and the                
45 degrees are empirical values based on experience. 
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Figure 3: ​Number of collocations for various restriction conditions for the period from 1              
August 2009 to 31 July 2010 (from Abdalla et al., 2013a) 

To account for the change in error estimates due to the collocation distance, Abdalla et al.                
(2013b) repeated the error estimates for different collocation distances as shown in Figure 4              
for triplets that involve a model hindcast (model run without data assimilation), buoy and an               
altimeter. The exercise was repeated for three altimeters: ENVISAT, Jason-1 and Jason-2.            
Abdalla et al. (2013a) estimated the impact of the collocation distance between the altimeter              
and the buoy as given in the legend at the right-hand side top of Figure 4. It is clear that the                     
change of error with respect to the collocation distance is linear. Altimeter (at different levels               
but have more or less same slope) and buoy SWH errors increase by increasing the               
collocation distance while the model error is decreasing. The rates of the change per 100 km                
are 0.021 m, 0.0004 m, and -0.19 m for the altimeter, the buoy and the model hindcast,                 
respectively. More or less same rates with respect to the collocation distance (line slopes in               
Figure 4) were found for each triplet whether it is ENVISAT, Jason-2 or Jason-1 in addition                
to the model and the buoys.  
 
The result above can be utilized to increase the number of collocations by adopting the               
200-km restriction of the collocation distance. The error estimates are then adjusted by             
using the results in Figure 4. An argument can be raised if one needs to adjust for a                  
zero-collocation distance or for a collocation distance depending on the scale of the model              
and super-observations (which is typically between 75 and 100 km). Using the distance             
equivalent to the scale (e.g. 75 km) instead of the 0-km distance, would add about 0.02 m to                  
the altimeter errors (model error by about 0.017 m while buoy errors will not change).               
Abdalla et al. (2013b) decided that a collocation distance equals to the scale of the data                
would be the proper selection. 
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Figure 4: ​Change of SWH errors as functions of the maximum allowed collocation distance.              
The linear regression fits are given. The errors ​<e​alt​

2​>​1/2​, <e​mod​
2​>​1/2​, <e​buo​

2​>​1/2 of            
the altimeters, the model and the buoys are in m while the collocation distance,              
d,  is in  km. (from Abdalla et al., 2013a) 

f) Robustness of the Results 

Abdalla and De Chiara (2017), who used the TCT to estimate the errors in the altimeter,                
scatterometer and model winds, applied the standard boot-strapping procedure with          
replacement on the original data samples. They created 200 new samples, with half the size,               
by random selection from the original sample. The error variances were estimated for each              
new sample. The mean and the standard deviation (SD) of the 200 estimates of error               
variances were computed and the 95% confidence interval was established. This is similar to              
the procedure followed by Caires and Sterl (2003) where the 95% confidence intervals were              
computed simply as 1.96 SD of errors emerging from the bootstrap samples. 
  
Since their sample sizes were rather large (35,000 collocations), Abdalla and De Chiara             
(2017) found that halving the sample does not impact the results. Intuitively, one expects              
the sample size to play an important role in the success of the TCT. The question is whether                  
there is a critical sample size that is required for the success of this type of analysis. The                  
answer may not be straightforward, but the bootstrapping may provide a guideline. They             
subsampled the original sample randomly 200 times for each given size and computed the              
errors, the ensemble means of the errors and the 95% confidence intervals. This was              
repeated for different sizes. They concluded that, as a crude estimate, sample sizes of few               
thousands of collocations are needed to get acceptable error estimates. Note that this             
exercise was carried out for wind speed not SWH. 
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2.2 Satellite to validation datasets comparison metrics 

Significant wave height (Hs) will be evaluated using RMS difference with respect to the              
colocated significant wave height of validation dataset. The colocation distance in time and             
space will be as short as possible but determined based on the minimum of colocation point                
number that needs to be representative (of the order of 100 minimum) 
 
Wave spectra L2 products will be evaluated using RMS on integral parameters per spectral              
partitions. The following parameters will be computed in the L2 product and compared with              
the validation datasets using a RMS difference: Hs, dir peak and spread, wl peak and               
spread. 
 
Additional metrics such as scatter index and correlation coefficient will be estimated. 
 
QQplots will also be provided to enable comparison of the different Sea State ECV products               
statistics with the validation datasets statistics. 
 

3. Validation data  
We describe here all reference validation datasets that will be used to validate the Sea State                
ECV. 

2.1 In situ data 

Moored buoys with more than 10 years of data that are sufficiently far from coastlines in                
deep water are important reference time series for validation and calibration of the satellite              
observations. Buoys from the NDBC, CDIP, MEDS, and OCEANSITES networks with these            
criteria are shown in the following Figure 5. More importantly, these data will help in               
validating the consistency of the satellite records for climate applications. 
 

 
Figure 5: Buoys with at least 10 years of observations, >50 km from the coast, and in deep 

water. The color code represents the length of the buoy time series in years. 
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A major concern of the time series from the moored buoys is the consistency. Changes in                
sensor payloads, geographical displacements, sensor configurations (e.g. placement of the          
sensors on the buoy), and hull type all affect the homogeneity of the historical records.               
Changes due to these issues were observed on buoys from the MEDS and NDBC networks               
in the NE Pacific (Gemmrich et al., 2011). These calibration issues are more widespread and               
exist on buoys near Hawaii, Gulf of Mexico, and NW Atlantic (Livermont, 2017). It is               
proposed that a subset of the buoys, possibly those with the longest time series, shown in                
the above figure are analyzed in more detail assessing the consistency utilizing the             
metadata describing the payload and hull changes. For this endeavour we propose to use              
existing tools such as RHtestV4 developed to assess homogeneity in time series developed             
by Wang and Feng (2013). This task will be performed in collaboration with Bob Jensen of                
the USACE and Ian Young of University of Melbourne. 
 
For the ​in situ wind and wave measurements that will be used for the validation of CCI                 
products, the project will rely on the ​CMEMS in situ TAC that collects all buoy data from the                  
following sources: 
 

● NDBC (including CDIP) 
● MEDS 
● CEREMA 
● Meteo-France 
● various buoys over European seas over Baltic, Azores, Spain, Portugal, Greece 

 
This service takes over the task previously performed through ​ESA/GlobWave project and            
both teams work together to ensure a smooth and seamless transition. While not yet fully               
operational today, it will provide the full backlog for all these networks, as well as the wave                 
spectra when available, and will then be a major asset for the CCI Sea State project. 
 
The data are fully homogenized (variable names and format), quality controlled and            
delivered in NetCDF format. The illustration below shows the coverage over September            
2017. 
 

 
Figure 6: Coverage of in situ data over September 2017 
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2.2 Wave enabled drifters 

 
The Global Drifter Program (GDP) (Niiler 2001) has been created to manage the deployment              
of surface drifters to follow surface currents.  
Since 2016 the GDP drifters use exclusively the Iridium satellite system because of the              
shorter data latency compared to the Argos satellite system (1 minute vs 90—120). Since              
the geolocation computed from the Doppler shift of the transmitter carrier frequency for             
Iridium is less accurate (~2 km) than the one obtained from Argos satellites (~200 m) [Lopez                
et al. [2014]] all of the Iridium drifters are equipped with a Global Positioning System (GPS)                
engine (accuracies of ~2m—50 m rms). 
 
Since the GPS engine can also be used to obtain directional wave properties, an exciting               
opportunity that is actively pursued by the GDP is the addition of directional wave spectra               
estimates from drifters. The advantages of GPS-derived wave properties are both practical            
[Herbers et al., 2012] and financial. Undrogued drifters can be turned into directional wave              
riders and can become the first in situ global network of wave sensors. It is anticipated that                 
wave forecasting model will greatly benefit from this application. 
Luca Centurioni from Scrips in San Diego agreed to share with the project data from these                
wave enabled drifters deployed in the Central pacific and in the southern ocean where little               
other wave measurements are possible. 
 

2.3 Microseism data 

Seismic records of ground displacement anywhere on Earth contain the signature of ocean             
waves in a broad frequency band that typically ranges from 0.003 Hz to 1 Hz, this signature                 
is known as microseisms. The quantitative link between waves and microseism is well             
understood for the vertical displacements in the “secondary microseism” peak that is around             
0.2 Hz (e.g. Bernard 1941, Longuet-Higgins 1950, Hasselmann 1963, Ardhuin & Herbers            
2013). This is dominated by Rayleigh waves generated where ocean waves of opposing             
direction and same frequency are found in the ocean. Such seismic sources can be put in                
three broad classes of events (Ardhuin et al. 2011).  
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Figure 7: Example of seismic spectrogram (bottom) observed and modeled, compared to 

wave spectra (top). Taken from Ardhuin et al. (2011). 
 

Due to the importance of opposing directions, there is no simple relation between wave              
height and microseism amplitude. However, for a same ocean wave spectrum shape, an             
increase in microseism correspond to an increase in wave height. As a result, microseism              
amplitudes can be use to track the magnitude of ocean waves over time (Bernard 1990,               
Grevemeyer et al. 2000). Any given station gives some sea state index in a region that                
varies in size from a few hundreds of kilometers to a few thousand of kilometers with a clear                  
influence of regional sea ice for example (Stutzmann et al., 2009, Stutzmann et al. 2012,               
Sergeant et al. 2013). Furthermore, secondary microseism can provide independent          
constraints on the amount of ocean wave reflection coefficient. Secondary microseisms are            
generated by the interaction of ocean waves of similar frequency and coming from opposite              
directions. The resulting pressure fluctuations have the double of the frequency of the ocean              
waves. From these pressure sources, seismic waves propagate everywhere in the ocean            
and the Earth and also have the double of the frequency of the ocean waves. Primary                
microseisms are generated by the direct coupling of the ocean waves with the sloping              
ocean-continent boundary and the resulting seismic waves have the same frequency as the             
ocean waves. 
 
The processed data will include all Geoscope stations (see map below,           
http://geoscope.ipgp.fr/index.php/en ). Data are converted into seismic acceleration and         
spectrogram are computed using windows of 3 hours. Three-hourly spectra data for the             
vertical components with 512 frequencies takes about 7 Mb for a full year. The total volume                
for 40 stations over 30 years is only 8 Gb, including quality flags indicating the likely                
occurrence of earthquakes. Synthetic spectrograms will be computed and the comparison           
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between observed and modelled spectrogram will enables to constrain the ocean wave            
coastal reflection coefficient. 
 
 
 
 
 
 

 

Figure 8: Extension of the Geoscope network of seismic stations 
 
Ongoing developments on seismic array processing also shows that a single array can be              
used to get a map of microseism sources (Farra et al., 2015, Meschede et al., 2017). We will                  
further explore the capability of using long-term arrays such as the Grafenberg array for              
mapping sources and their evolution over the past 40 years.  
 

2.4 Wave model data 

 
While wave model data cannot be considered as ground truth, they provide valuable large              
number of collocation with satellite data allowing to validate the sensitivity of the retrieved              
wave measurements with respect to the wide variety of metocean conditions. 
 
Model estimates from MFWAM distributed by CMEMS will be used. 
 
This global wave system of Météo-France is based on the wave model MFWAM which is a                
third generation wave model. MFWAM uses the computing code ECWAM-IFS-38R2 with a            
dissipation terms developed by Ardhuin et al. (2010). The model MFWAM was upgraded on              
november 2014 thanks to improvements obtained from the european research project « my             
wave » (Janssen et al. 2014). The model mean bathymetry is generated by using 2-minute               
gridded global topography data ETOPO2/NOAA. Native model grid is irregular with           
decreasing distance in the latitudinal direction close to the poles. At the equator the distance               

 
 Public document  20 
 



LOPS and CCI_Sea_state Team      CCI+ Phase 1: Sea_State_cci: PVP

 

in the latitudinal direction is more or less fixed with grid size 1/10°. The operational model                
MFWAM is driven by 6-hourly analysis and 3-hourly forecasted winds from the IFS-ECMWF             
atmospheric system and by the Mercator 1/12 global ocean surface current distributed by             
CMEMS . The wave spectrum is discretized in 24 directions and 30 frequencies ranging from               
0.035 Hz to 0.58 Hz. The model MFWAM uses the assimilation of altimeters with a time step                 
of 6 hours. The global wave system provides analysis 4 times a day, and a forecast of 5                  
days at 0:00 UTC. The wave model MFWAM uses the partitioning to split the swell spectrum                
in primary and secondary swells. 
 

2.5 Independent satellite measurements  

We note that CFOSAT SWIM instrument provides a novel wave scatterometer that can             
provide wavelength and direction information well collocated in time with Sentinel-1 A/B data             
as both missions are on a dust down orbit (equator crossing time near 6am/6pm local time).                
These SWIM derived information can be compared to SAR derived wavelength and            
directions. Note that SWIM instrument is rather recent and careful validation of these             
measurements is still ongoing. 

4. Validation in the Round Robin process 

Validation in the Round Robin process will use its own methods suitable for fair              
intercomparison of algorithms over a representative and common subset of the reference            
validation datasets. The agreed metrics for this are defined in five parts as follows: 

Part 1: outliers analysis  

Definition: outliers are considered points for which lie outside [- 0.25m, ​25​m], which             
SWH=NaN, and/or which are more than three times the median absolute deviation            
away from the median of the closest 20 points.  

1.1 Total Number of Outliers  

1.2 Number of Outliers in the Coastal Zone (distance to coast<20 Km, < 10km and <                
5km). “Distance to coast” is the distance of each 20-Hz point from the nearest coast,               
computed using the “Distance to Nearest Coastline: 0.01-Degree Grid: Ocean”          
available from ​http://pacioos.org​. In this dataset, “Distances were computed with GMT           
using its intermediate-resolution coastline and then gridded globally at a spatial           
resolution of 0.04 degrees. Bilinear interpolation was then applied to increase the            
spatial resolution to 0.01 degrees.”  

 
Part 2: noise analysis as a function of distance to coast  

Definition: noise is defined as the standard deviation of the 20-Hz SWH within a 1- Hz                
distance  

2.1 Median of all valid noise values as a function of distance to coast, with open                

 
 Public document  21 
 



LOPS and CCI_Sea_state Team      CCI+ Phase 1: Sea_State_cci: PVP

 

ocean represented by distance to coast > 20km  

2.2 Median of noise at 0m<SWH<1m (low sea states) in open ocean and coastal              
zone  

2.3 Median of noise at 1.5m<SWH<2.5m (average sea states) in open ocean and             
coastal zone  

2.4 Median of noise at SWH>6m (high sea states) in open ocean and coastal zone  

2.5 Median of noise at SWH>12 m (very high sea states) in open ocean and coastal                
zone  

 
Part 3: comparison with in-situ data  

Definition: buoys shall be grouped into “open ocean buoys” and “coastal (but            
exposed) buoys” (see presentation by Quartly et al. at CAW 2018). Statistics will be              
separated accordingly.  

Definition: “closest point” is defined as the median SWH of the 51 high-frequency (“51              
20-Hz”) closest points to the buoy, including NaNs and after unrealistic estimations            
are excluded. Unrealistic estimations are excluded in the following way: first points            
outside the interval [-0.25 m, 25 m] are excluded, secondly the 3- sigma criterion is               
used to eliminate remaining unrealistic estimations.  
For each of the following statistics, the mean values over all the “open ocean buoys”               
on one side and the “coastal buoys” on the other side will be considered for the                
assessment.  

3.1 PCHC at closest point  

The Percentage of Cycles for High Correlation (PCHC, Passaro et al. 2015) is a              
statistic designed to take into account both the correlation (Pearson correlation           
coefficient) between time series and the number of observations available. The test is             
performed in an iterative way: First of all, for the selected location, the correlation of               
the buoy time series with the entire set of altimetry retrievals is checked; if the               
correlation coefficient is lower than a certain threshold, then the cycle with the             
maximum discrepancy (quantified as the maximum of the absolute value of the            
difference) between the buoy value and altimeter retrieval is excluded. This exclusion            
is iterated until the correlation rises above that theshold, at which point the             
percentage of cycles left provides the measure of the general quality of the retracked              
altimetry values.  

3.2 Standard Deviation between SWH from altimetry at closest point and buoy.  

3.3 Slope of the linear fit (regression line of SWH​altimetry ​-vs- SWH​buoy​ scatter plot)  

3.4 Median bias between SWH from altimetry at closest point and buoy  
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Part 4: comparison with model output  

Model grid points and altimetry will be coupled by considering the median of the SWH               
20-Hz measurements from altimetry within the grid point. Coastal and Open Ocean            
statistics will be divided: Coastal statistics will include measurements and model data            
closer than 20 km to the coast. The following statistics will be provided:  

4.1 Correlation  

4.2 Standard Deviation of the difference between SWH from altimetry and SWH from             
model.  

4.3 Slope of the linear fit (regression line of SWH​altimetry ​-vs- SWH​model ​scatter plot)  

4.4 Median bias between SWH from altimetry and SWH from model.  

Part 5: representation of scales of variability  

Along-track spectra of SWH will be calculated for open ocean segments of track of at               
least 1024 points (~330 km length) using Welch's method. A useful measure to be              
extracted is the "signal variance at the scales of interest", which will be the mean               
spectral level averaged over wavelengths of 100-50km and 50-25 km. 

5. ECV product validation and User assessment 
Work Package 4500 is dedicated to the final validation and intercomparison of ECV             
products. All the validation diagnoses defined previously and applied in the round-robin            
phase could be applied in this task. The results of validation are reported in the Product                
Validaton and Intercomparison Report, produced in three versions during the second two            
years of the project. 
 
Work Package 5000 covers assessment of products from a climate perspective and includes             
Case Studies for the specific assessment of ECV products for particular applications: 
 

● Extremes at the coast 
● Tropical swell and storms 
● Links with Copernicus Climate Change Service 
● Wave near ice 

 
Results will be reported in the Climate Assessment Report and peer-reviewed journal            
publications. 
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