Skip navigation.

Glaciers CCI project



about | project team | resources, data and documents | publicationscontact & support 


About the project

Main objectives
The main objective of the Glaciers_cci project is to contribute to the efforts of creating a globally complete and detailed glacier inventory as requested in action T2.1 by GCOS (2006). This activity has two major parts: One is data creation (glacier outlines) in selected and currently still missing key regions, and the other one is in establishing a more consistent framework for glacier entity identification to enhance the integrity and error characterization of the available data sets. As meltwater from glaciers and icecaps provide a substantial contribution to global sea-level rise, the project will also create two additional products in selected key regions, elevation changes and velocity fields.
The work to be performed in the project will follow the Tasks as described in the Statement of Work for all CCI projects. The major steps towards the overall project goals will include the assessment of the user requirements in regard to product specifications and key regions to be considered, development of algorithms for product generation and their evaluation by the community in round-robin experiments, preparation of illustrated guidelines for generation of the three products (considering a technical and methodological perspective), creation of the products and quality assessment. These steps will be performed in close cooperation with the climate research group (CRG) of the project and the participants of the GLIMS initiative.
Methodological uncertainty (glacier area)
One aim of the project is to create vector data sets of glacier outlines in various key regions of the world. These lines are infinitely sharp, but a glacier is actually a fuzzy object that seldom has sharp boundaries. Automated multispectral classification of ice and snow is straight forward and the variety of available algorithms only differ at the level of individual pixels (e.g. Paul and Kääb, 2005). Three other components in the post-classification stage make the ’true’ glacier boundary nevertheless uncertain: debris cover, attached seasonal and/or perennial snow, and the position of drainage divides in the accumulation area. This implies that product accuracy is largely driven by the skills of the analyst and clear guidelines. In the round-robin experiments for the glacier area product, we will thus focus on these issues rather than on different algorithms for the primary classification of ice and snow.
Sensors and data sets
Product generation will consider a wide range of data sets including satellite images in the optical and microwave range, space-borne altimeters and digital elevation models of varying source, spatial resolution and accuracy. The main data source for the glacier outlines are Landsat TM/ETM+ imagery as available for free from the USGS (, altimeter data and DEMs for the elevation change product, and data from optical and mircrowave sensors for the velocity product. A pre-defined set of key regions for product generation is specified in the URD, but this will likely change over time as ongoing glacier mapping activities steadily increase the number of regions covered. Close collaboration with the GLIMS community will hopefully help to avoid duplication of work.
Time stamp
Because glaciers are constantly changing, a glacier inventory for an entire region is at best created from data acquired over a short period of time (a few weeks). As a detailed glacier inventory does also include topographic information for each entity (e.g. minimum, maximum and mean elevation), the DEM used to derive this information should be created from data that were acquired close to the satellite images. Considering that the near-global DEM from SRTM is acquired in the year 2000 and that a high number of Landsat ETM+ scenes are available from the 1999-2003 period, the temporal focus of the project will also be on this period where possible. But as in some regions of the world mapping conditions at the end of the ablation period (or dry season) are constantly poor (e.g. due to clouds and seasonal snow), only the most suitable scenes from the Landsat archive will be selected for product generation and this will include the full time series (1984-2011). For the other products (elevation change and velocity), the time stamp will be driven by data availability.
The Climate Research Group (CRG)
The CRG of the projects includes representatives from the two key science bodies of the project (WGMS and GLIMS), experts from climate (IAC-ETHZ) and hydrological modelling (KfG), as well as scientists responsible for operational glacier monitoring (NVE) and with an overview on the situation in the Himalaya - Hindu Kush region (ICIMOD). The persons from these institutions will provide advice on technical issues, help with the implentation of standards and the evaluation of product quality, participate in the Round-Robin experiments, and give feedback to most of the document deliverables. The CRG is led by Tony Payne from the University of Bristol, who has the required overview on climate-related glaciological research on a global scale.

The project team

The project is led by the Department of Geography, University of Zurich (GIUZ) as a prime contractor. The EO expert team consists of four sub-contractors from four countries. Two of these sub-contractors are industry partners (Enveo, Gamma) and two sub-contractors are from Universities (GUIO, SEEL). The climate research group is led by the University of Bristol. The key personnel of the consortium are:

Scientific leader

Dr. Frank Paul: Department of Geography, University of Zurich, Switzerland (GIUZ)

Project Manager: 

Dr. Philipp Rastner: Department of Geography, University of Zurich, Switzerland (GIUZ)

EO Science Team:

Prof. Dr. Helmut Rott, Dr. Thomas Nagler: Environmental Earth Observation, Innsbruck, Austria (Enveo)

Prof. Dr. Andreas Kääb, Dr. Christopher Nuth: Department of Geosciences, University of Oslo, Norway (GUIO)

Prof. Dr. Andrew Shepherd: School of Earth and Environment, University Of Leeds, United Kingdom (SEEL)

Dr. Tazio Strozzi, Dr. Urs Wegmüller, Gamma Remote Sensing AG, Gümligen, Switzerland (Gamma)

System Engineers (SE)

Dr. Andreas Wiesmann, Dr. Charles Werner (Gamma), Mag. Markus Heidinger (Enveo)

Climate Research Group (CRG)

Prof. Dr. Tony Payne (lead): School of Geographical Sciences, University of Bristol, United Kingdom (SGS)

Dr. Michael Zemp: World Glacier Monitoring Service (WGMS), University of Zurich, Switzerland
Dr. Bruce Raup: Global Land Ice Measurements from Space (GLIMS), National Snow and Ice Data Center (NSIDC), Boulder (CO), USA
Dr. Sven Kotlarski: Institute for Atmospheric and Climate Science (IAC), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
Dr. Liss M. Andreassen: Norwegian Water Ressources and Energy Directorate (NVE), Oslo, Norway
Dr. Ludwig Braun: Commision for Glaciology (KfG), Bavarian Academy of Sciences, Munich, Germany
Dr. Pradeep Mool: International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal

User groups

Main users of the Glaciers_cci products are the two key science bodies WGMS and GLIMS within the Global Terrestrial Network for Glaciers (GTN-G). Additional users on global to regional scales are the glaciological and hydrological modelling communities who will use the generated data in their applications. The creation of a globally complete and detailed glacier inventory is a major action item (T.2.1) in the GCOS implementation plan. In this regard the product will also serve the UNFCCC in improving the estimates of the contribution of glaciers and icecaps to global sea-level rise for the forthcoming IPCC Assessment Report (AR5).

Resources, data and documents


Glacier Outlines

Randolph Glacier Inventory
Glaciers_cci contributed significantly to the Randolph Glacier Inventory. The data can be downloaded here.

Greenland Glacier Inventory
We generated an inventory all glaciers and ice caps on Greenland together with the EUFP7 poject ice2sea. To serve the needs of different user communities, we assigned to each glacier one of three connectivity levels with the ice sheet (CL0, CL1, CL2; i.e. no, weak, and strong connection) to clearly, but still flexibly, distinguish the local glaciers and ice caps (GIC) from the ice sheet and its outlet glaciers.

More information can be found in:
Rastner, P., Bolch, T., Mölg, N., Machguth, H., Le Bris, R., Paul, F. (2012): The first complete inventory of the local glaciers and ice caps on Greenland. The Cryosphere 6, 1483–1495. doi:10.5194/tc-6-1483-2012.

Data download:

The data is free to use for scientific purposes but please cite the above mentioned article. Feedback and suggestions for improvements are welcome.

Elevation Change

We assesed the elevation change of Greenlands glaciers and ice caps using ICSSat data from Oct. 2003 to Mar. 2008. We performed several filtering techniques to minimize outliners. 

More information can be found in: 
Bolch, T., Sandberg Sørensen, L., Simonssen, S.B., Mölg, N., Machguth, H., Rastner, P., Paul, F. (2013): Mass loss of Greenland’s glaciers and ice caps 2003-2008 revealed from ICESat laser altimetry data. Geophysical Research Letters 40: 875–881, doi:10.1002/grl.50270.

Data download
dhdt data for Greenland's glaciers from ICESat

The data is free to use for scientific purposes but please cite the above mentioned article. Feedback is welcome.

The Climate Research Data Package (CRDP) can soon be downloaded here.

Products description

In the following the products which will be generated during the Glaciers_cci project will be presented and described shortly. More details can be found in the Product Specification Document (PSD)

  • Glacier area - glacier outlines in a digital vector format along with a number of topographic attributes (e.g. mean, minimum and maximum elevation, mean aspect and slope) for each entity as relevant for a glacier inventory
  • Elevation change - Elevation differences for entire glaciers from DEM differencing (at grid cells) or time-series at specific points from altimetry (at footprint/cross-over points)
  • Surface velocity - Surface displacement fields will be calculated for selected glacier parts; the locations will depend on trackable features (optical contrast or radar intensity features)


Image correlation software CIAS
Simple, free correlation software to compute displacements and other offsets between two images. The software can be downloaded here.

Further tools and applications for visualization of final products of glaciers_cci will be published here soon.


Data access


 URL for download


Landsat or
























Data descriptions



Satellites (general)

Landsat 7




Product overview


All key documents are listed below:

Publications (with Glaciers_cci contribution)


74. Kääb, A., Leinss, S., Gilbert, A., Bühler, Y., Gascoin, S., Evans, S.G., Bartelt, P., Berthier, E., Brun, F., Chao, W., Farinotti, D., Gimbert, F., Guo, W., Huggel, C., Kargel, J.S., Leonard, G.J., Tian, L.,  Treichler D. and Yao, T. (2018): Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nature Geoscience, 11, 114–120; doi:10.1038/s41561-017-0039-7.


73. Rastner, P.Strozzi, T. and Paul, F. (2017): Fusion of multi-source satellite data and DEMs to create a new glacier inventory for Novaya Zemlya. Remote Sensing, 9(11), 1122; doi: 10.3390/rs9111122.

72. Brun, F., E. Berthier, P. Wagnon, A. Kääb and D. Treichler (2017): A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nature Geoscience, 10, 668-673; doi:10.1038/ngeo2999.

71. Girod, L., Nuth, C.Kääb, A.McNabb, R., and Galland, O. (2017): MMASTER: improved ASTER DEMs for elevation change. Remote Sensing, 9 (7), 704; doi:10.3390/rs9070704.

70. Merchant, C.J., F. Paul, et al. (2017): Uncertainty information in climate data records from Earth observation. Earth System Science Data, 9, 511-527;

69. Paul, F.T. Strozzi, T. Schellenberger and A. Kääb (2017): The 2015 surge of Hispar Glacier in the Karakoram. Remote Sensing, 9(9), 888; doi: 10.3390/rs9090888.

68. Strozzi, T.F. PaulA. Wiesmann, T. Schellenberger and A. Kääb (2017): Circum-Arctic changes in the flow of glaciers and ice caps from satellite SAR data between the 1990s and 2017. Remote Sensing, 9(9), 947; doi: 10.3390/rs9090947

67. Altena, B. and A. Kääb (2017): Elevation change and improved velocity retrieval using orthorectified optical satellite data from different orbits. Remote Sensing, 9(3), 300; doi: 10.3390/rs9030300.

66. Farinotti, D., Brinkerhoff, D. J., Clarke, G. K. C., Fürst, J. J., Frey, H., Gantayat, P., Gillet-Chaulet, F., Girard, C., Huss, M., Leclercq, P. W., Linsbauer, A., Machguth, H., Martin, C., Maussion, F., Morlighem, M., Mosbeux, C., Pandit, A., Portmann, A., Rabatel, A., Ramsankaran, R., Reerink, T. J., Sanchez, O., Stentoft, P. A., Singh Kumari, S., van Pelt, W. J. J., Anderson, B., Benham, T., Binder, D., Dowdeswell, J. A., Fischer, A., Helfricht, K., Kutuzov, S., Lavrentiev, I., McNabb, R., Gudmundsson, G. H., Li, H., and Andreassen, L. M.: How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models  Intercomparison eXperiment, The Cryosphere, 11, 949-970, doi: 10.5194/tc-11-949-2017.

65. Girod L., Nuth C., Kääb A., Etzelmüller B., and Kohler J. (2017). Terrain changes from images acquired on opportunistic flights by SfM photogrammetry. The Cryosphere, 11, 827-840, doi:10.5194/tc-11-827-2017.

64. Goerlich, F., T. Bolch, K. Mukherjee and T. Pieczonka (2017): Glacier Mass Loss during the 1960s and 1970s in the Ak-Shirak Range (Kyrgyzstan) from Multiple Stereoscopic Corona and Hexagon Imagery. Remote Sens. 2017, 9(3), 275; doi:10.3390/rs9030275.

63. Huber, J., A. Cook, F. Paul and M. Zemp (2017): A complete glacier inventory of the Antarctic Peninsula based on Landsat 7 images from 2000-2002 and other pre-existing datasets. Earth Systems Science Data, 9, 115-131, doi: 10.5194/essd-9-115-2017.

62. Kääb A., Altena B. and Mascaro J. (2017): Coseismic displacements of the 14 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake using the Planet optical cubesat constellation. Natural Hazards and Earth System Sciences, 17, 627-639, doi:10.5194/nhess-17-627-2017.

61. Köhler, A., Nuth, C.; Kohler, J., Berthier, E., Weidle, C. and Schweitzer, J. (2016): A 15 year record of frontal glacier ablation rates estimated from seismic data. Geophysical Research Letters. 43(23), 12155-12164 (doi: 10.1002/2016GL070589).

60. Marzeion, B., N. Champollion, W. Haeberli, K. Langley, P. Leclercq and F. Paul (2017): Observation of glacier mass changes on the global scale and its contribution to sea level change. Surveys in Geophysics, 38 (1), 105-130, doi: 10.1007/s10712-016-9394-y.

59. Narama C., M. Daiyrov, T. Tadono, M. Yamamoto, A. Kääb, R. Morita, J. Ukita (2017). Seasonal drainage of supraglacial lakes on debris-covered glaciers in the Tien Shan Mountains, Central Asia. Geomorphology, 286, 133-142, doi: 10.1016/j.geomorph.2017.03.002.

58. Strozzi T., A. Kääb and T. Schellenberger (2017): Frontal destabilization of Stonebreen, Edgeøya, Svalbard. The Cryosphere, 11, 553-566, doi: 10.5194/tc-11-553-2017.

57. Treichler D. and Kääb A. (2017): Snow depth from ICESat laser altimetry - A test study in southern Norway. Remote Sensing of Environment, 191, 389-401, doi: 10.1016/j.rse.2017.01.022.


56. Kääb, A., Winsvold, S.H., Altena, B., Nuth, C.Nagler, T.Wuite, J. (2016): Glacier Remote Sensing Using Sentinel-2. Part I: Radiometric and Geometric Performance, and Application to Ice Velocity. Remote Sensing, 8(7), 598 (doi:10.3390/rs8070598)

55. Kronenberg, M., Barandun, M., Hoelzle, M., Huss, M., Farinotti, D., Azisov, E., Usubaliev, R., Gafurov, A., Petrakov, D. and Kääb, A.(2016): Mass balance reconstruction for Glacier No. 354, Tien Shan, from 2003- 2014. Annals of Glaciology, 57(71), 92-102.

54. Paul, F., S.H. Winsvold, A. KääbT. Nagler and G. Schwaizer (2016): Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents and Surface Facies, and Comparison to Landsat 8. Remote Sens., 8(7), 575 (doi:10.3390/rs8070575).

53. Robson, B.A., D. Hölbling, C. NuthT. Strozzi and S.O. Dahl (2016): Decadal scale changes in glacier area in the Hohe Tauern National Park, Austria determined by object-based image analysis. Remote Sensing, 8, 67 (10.3390/rs8010067).

52. Winsvold, S., A. Kääb and C. Nuth (2016): Regional glacier mapping using optical satellite data time-series. JSTARS (doi: 10.1109/JSTARS.2016.2527063).


51. Allison, I., Colgan, W., King, M., Paul, F. (2015): Ice sheets, glaciers and sea level. In: Haeberli, W. and C. Whiteman, eds. Snow and Ice-Related Hazards, Risks, and Disasters, Amsterdam, Netherlands, Elsevier, 714-748.

50. Bolch, T. (2015): Glacier area and mass changes since 1964 in the Ala Archa Valley, Kyrgyz Ala-Too, northern Tien Shan. Лёд и Снег (Ice and Snow) 129(1): 28-39.

49. Holzer, N., S. Vijay, T. Yao, B. Xu, M. Buchroithner and T. Bolch(2015): Four decades of glacier variations at Muztagh Ata (eastern Pamir): a multi-sensor study includ-ing Hexagon KH-9 and Pléiades data. The Cryosphere, 9, 2071-2088.

48. Kääb, A., Treichler D., Nuth C. and Berthier E. (2015): Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. The Cryosphere, 9, 557- 564. doi:10.5194/tc-9-557-2015

47. Le Bris, R. and F. Paul (2015): Glacier-specific elevation changes in western Alaska. Annals of Glaciology, 56 (70), 184-192.

46. Nuth, C., Hagen, J.O., and Kohler, J. (2015): Ch 4. Glaciers in Geoscience Atlas of Svalbard (ed. Dallmann W.K.). Norsk Polarinstitutt Rapport; 148, Tromsø.

45. Paul, F. and 24 others (2015): The Glaciers Climate Change Initiative: Algorithms for creating glacier area, elevation change and velocity products. Remote Sensing of Environment, 162, 408-426. doi:10.1016/j.rse.2013.07.043

44. Paul, F. (2015): Revealing glacier flow and surge dynamics from animated satellite image sequences: examples from the Karakoram. The Cryosphere, 9, 2201-2214.

43. Paul, F. (2015): Kartierung von Gletschern mit Satellitendaten und das globale Gletscherinventar. In: Lozán, J.L., H. Grassl, D. Kasang, D. Notz, and H. Escher-Vetter (Hrsg.): Warnsignal Klima: Das Eis der Erde (Kap. 4.1), 103-110.

42. Pellicciotti, F., Stephan, C., Miles, E., Herreid, S., Immerzeel, W., Bolch, T. (2015): Mass-balance changes of the debris-covered glaciers in the Langtang Himal, Nepal, between 1974 and 1999. Journal of Glaciology 61(226): 373-386, doi: 10.3189/2015JoG13J237

41. Pieczonka, T., Bolch, T. (2015): Region-wide glacier mass budgets and area changes for the Central Tien Shan between ~1975 and 1999 using Hexagon KH-9 imagery. Global and Planetary Change, 128, 1-13. 10.1016/j.gloplacha.2014.11.014.

40. Raup, B.H., L.M. Andreassen, T. Bolch and S. Bevan (2015): Remote sensing of glaciers. In: Tedescco, M. (ed.): Remote Sensing of the Cryosphere, John Wiley & Sons, 123-165.

39. Robson, B.A.C. Nuth, S.O. Dahl, D. Hölbling, T. Strozzi and P. R. Nielsen (2015): Automated classification of debris-covered glaciers combining optical, SAR and topo-graphic data in an object-based environment. Remote Sensing of Environment, 170, 372-387.

38. Schellenberger, T., T. Dunse, A. Kääb, J. Kohler, C. H. Reijmer: Surface speed and frontal ablation of Kronebreen and Kongsbreen, NW-Svalbard, from SAR offset tracking. The Cryosphere, 9, 2339-2355.

37. Shangguan, D. H., Bolch, T., Ding, Y. J., Kröhnert, M., Pieczonka, T., Wetzel, H. U., Liu, S. Y. (2015): Mass changes of Southern and Northern Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during ∼1975 and 2007 derived from remote sensing data, The Cryosphere 9: 703-717, doi:10.5194/tc-9-703-2015.

36. Wang, D. and A. Kääb (2015): Modeling glacier elevation change from DEM time series. Remote Sensing, 7(8), 10117-10142.

35. WGMS (2015): Global Glacier Change Bulletin No. 1 (2012–2013). M. Zemp, I. Gärtner-Roer, S. Nussbaumer, F. Hüsler, H. Machguth, N. Mölg, F. Paul and M. Hoelzle (eds.), ICSU(WDS)/IUGG(IACS)/ UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich, Switzerland, 230 pp.

34. Zemp, M., H. Frey, I. Gärtner-Roer, S.U. Nussbaumer, M. Hoelzle, F. Paul, W. Haeberli, et al. (2015): Historically unprecedented global glacier changes in the early 21st century. Journal of Glaciology, 61 (228),745-762.


33. Bolch, T. (2015): Glacier area and mass changes since 1964 in the Ala Archa Valley, Kyrgyz Ala-Too, northern Tien Shan. Лёд и Снег (Ice and Snow) 129(1): 28-39. doi: 10.15356/2076-6734-2015-1-28-39

32. Frey, H., Machguth, H., Huss, M., Huggel, C., Bajracharya, S., Bolch, T., Kulkarni, A., Linsbauer, A., Salzmann, N., and Stoffel, M. (2014): Ice volume estimates for the Himalaya–Karakoram region: evaluating different methods, The Cryosphere 8: 2313-2333.

31. Kargel, J.S., Leonard, G.J., Bishop, M.P., Kääb, A., Raup, B.H. (Eds.) (2014): Global Land Ice Measurements from Space. Springer Praxis Books, 876 pp. (link:

30. Neckel, N., Kropacek, J., Bolch, T., Hochschild, V. (2014): Glacier elevation changes on the Tibetan Plateau between 2003 – 2009 derived from ICESat measurements Environmental Research Letters 9: 014009 (7pp), doi:10.1088/1748-9326/9/1/014009.

29. Paul, F. and Mölg, N. (2014): Hasty retreat of glaciers in northern Patagonia from 1985 to 2011. Journal of Glaciology, 60 (224), 1033-1043. doi:10.3189/2014JoG14J104

28. Pfeffer, W.T., A.A. Arendt, A. Bliss, T. Bolch, J.G. Cogley, A.S. Gardner, J.-O. Hagen, R. Hock, G. Kaser, C. Kienholz, E.S. Miles, G. Moholdt, N. MölgF. Paul, V. Radic, P. Rastner, B.H. Raup, J. Rich, M.J. Sharp and the Randolph Consortium (2014): The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journal of Glaciology 60(211): 537-552. doi: 10.3189/2014JoG13J176.

27. Rastner, P.Bolch, T., Notarnicola, C., Paul, F. (2014): A comparison of pixel- and object based glacier classification with optical satellite images. IEEE Journal of Selected Topics of Applied Earth Observation, 7(3): 853-862, doi: 10.1109/JSTARS.2013.2274668.


26. Bhambri, R., Bolch, T., Kawishwar, P., Dobhal, D.P., Srivastava, D., Pratap, B. (2012): Heterogeneity in glacier response in the Shyok valley, northeast Karakoram. The Cryosphere 7: 1384-1398.

25. Bolch, T., Sandberg Sørensen, L., Simonssen, S.B., Mölg, N., Machguth, H., Rastner, P., Paul, F. (2013): Mass loss of Greenland’s glaciers and ice caps 2003-2008 revealed from ICESat laser altimetry data. Geophysical Research Letters 40, doi: 10.1029/2012GL054710. 

24. Gardelle, J., Berthier, E., Arnaud, Y., Kääb, A.: Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011, The Cryosphere 7, 1263-1286.

23. Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J., Berthier, E., Pfeffer, T. W., Kaser, G., Hock, R., Ligtenberg, S. R. M., Bolch, T., Sharp, M.J., Hagen, J. O., van den Broeke, M. R., Paul, F.: (2013): A reconciled estimate of glacier contributions to sea-level rise: 2003 to 2009. Science 340: 852–857.

22. Hollmann, R., Merchant, C., Saunders, R., Downy, C., Buchwitz, M., Cazenave, A., Chuvieco, E., Defourny, P.,  de Leeuw, G., Forsberg, R., Holzer-Popp, T., Paul, F., Sandven, S., Sathyendranath, S., van Roozendael, M.,  Wagner, W. (2013): The ESA Climate Change Initiative: satellite data records for essential climate variables. Bulletin of the American Meteorological Society, 94(10): 1541-1552.

21. Nuth, C., Kohler, J., König, M., von Deschwanden, A., Hagen, J. O., Kääb, A., Moholdt, G., and Pettersson, R. (2013): Decadal changes from a multi-temporal glacier inventory of Svalbard, The Cryosphere, 7, 1603-1621, doi:10.5194/tc-7-1603-2013.

20. Pieczonka, T., Bolch, T., Wei, J., Liu, S. (2013): Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery. Remote Sensing of Environment 130, 233-244.

19. Paul, F., Barrand, N., Berthier, E., Bolch, T., Casey, K., Frey, H., Joshi, S.P., Konovalov, V., Le Bris, R., Mölg, N., Nosenko, G., Nuth, C., Pope, A., Racoviteanu, A., Rastner, P., Raup, B., Scharrer, K., Steffen, S., Winsvold, S. (2013): On the accuracy of glacier outlines derived from remote sensing data. Annals of Glaciology54(63), 171-182.


18. Arendt, A. et al. (2012): Randolph Glacier Inventory [v2.0]: A Dataset of Global Glacier Outlines, Boulder, Colorado, Digital Media.

17. Andreassen, L.M., Winsvold, S.H., Paul, F., Hausberg, J.E. (2012): Inventory of Norwegian Glaciers. Norwegian Water Resources and Energy Directorate, Rapport 38-2012, 240 pp.

16. Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, G., Frey, H., Kargel, J.S., Fujita, K., Scheel, M., Bajracharya, S., Stoffel, M. (2012): The state and fate of Himalayan glaciers. SCIENCE 336(6079), 310–314.

15. Debella-Gilo, M.; Kääb, A. (2012) Measurement of Surface Displacement and Deformation of Mass Movements Using Least Squares Matching of Repeat High Resolution Satellite and Aerial Images. Remote Sensing 4(1), 43-67.

14. Debella-Gilo M.; Kääb, A. (2012): Locally adaptive template sizes for matching repeat images of Earth surface mass movements. ISPRS J. Photogramm. Remote Sens. 69, 10-28.

13. Heid, T., Kääb, A. (2012): Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery. Remote Sensing of Environment 118, 339-355.

12. Heid T., Kääb A. (2012): Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds. The Cryosphere 6, 467-478.

11. Kääb A. , Berthier, E., Nuth, C., Gardelle, J., Arnaud. Y. (2012): Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488(7412), 495-498.

10. Leclercq, P.W., Weidick, A., Paul, F.Bolch. T., Citterio, M., Oerlemans, J. (2012): Historical glacier length changes in West Greenland. The Cryosphere 6, 1339-1343.

9. Nuth, C.; Schuler, T.; Kohler, J.; Altena, B.; Hagen, J. (2012): Estimating the long-term calving flux of Kronebreen, Svalbard, from geodetic elevation changes and mass-balance modelling. Journal of Glaciology 58(207), 119-133.

8. Paul, F., Bolch, T., Kääb, A., Nagler, T., Shepherd, A., Strozzi, T.(2012): Satellite-based glacier monitoring in the ESA Project Glaciers_cci. Proceedings of the IGARSS Conference, 23.-27.7.2012, Munich, Germany: 3222-3225. 

7. Rastner, P., Bolch, T., Mölg, N., Machguth, H., Paul, F. (2012): The first complete glacier inventory for the whole of Greenland. The Cryosphere 6, 1483-1495.

6. Shepherd, A., & et al. (2012). A reconciled estimate of ice-sheet mass balance. Science, 338, 1183–1189.


5. Bolch, T., Pieczonka, T., Benn, D.I. (2011): Multi-decadal mass loss of glaciers in the Everest area (Nepal, Himalaya) derived from stereo imagery. The Cryosphere 5, 349-358. 

4. Nuth, C.; Kääb, A. (2011): Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere 5, 271-290.

3. Paul, F. (2011): Melting glaciers and icecaps. Nature Geoscience4 (2), 71-72.

2. Rinne, E., Shepherd, A., Muir, A., & Wingham, D. (2011). A Comparison of Recent Elevation Change Estimates of the Devon Ice Cap as Measured by the ICESat and EnviSAT Satellite Altimeters. IEEE Transactions on Geoscience and Remote Sensing, 49, 1902–1910.

1. Rinne, E., Shepherd, A., Palmer, S., van den Broeke, M., Muir, A., Ettema, J., & Wingham, D. (2011). On the recent elevation changes at the Flade Isblink Ice Cap, northern Greenland. Journal of Geophysical Research, 116, F03024.

Contact us / support

For further information about the Glaciers_cci project lease contact:

Dr. Frank Paul, Department of Geography, University of Zurich, Switzerland, frank.paul[at] (Scientific lead)

Dr. Philipp Rastner, Department of Geography, University of Zurich, Switzerland, philipp.rastner[at] (Project Manager)