Estimating bias and precision of biomass estimates in miombo woodlands with global and local maps

Erik Næsset, Terje Gobakken – NMBU, Norway
Ronald E. McRoberts – US Forest Service, USA
Sassan Saatchi, Yifan Yu – NASA-JPL, USA
Øivind D. Trier – NCC, Norway
Eliakimu Zahabu – SUA, Tanzania

ESA CCI Biomass Workshop, Paris, 25-26 September 2018
IPCC compliance – useful guidelines for map assessment

- IPCC guidelines – how should they be interpreted?
 1. “neither over- nor underestimates so far as can be judged”
 Methodology:
 a) Either use a «benchmark» value to assess estimates, or
 b) use statistical estimators that are known to be unbiased, e.g. design-based estimators
 2. “uncertainties are reduced as far as is practicable”
 Use the map either
 a) as the primary source of information, or
 b) as auxiliary information to improve precision of the estimates.
Biomass map assessment

Do you have a probability ground sample?

Yes

Design-based inference
map=auxiliary data only

1st guideline: accuracy
Satisfied via use of unbiased design-based estimator

2nd guideline: uncertainty
Design-based variance estimators are rigorous

Use of map reduces uncertainty

No

Model-based inference
map=primary data source

1st guideline: accuracy
Requires independent, greater quality data to assess accuracy

2nd guideline: uncertainty
Use model-based variance estimator with data provided by the map author
Study area and design

Sampling design:

Systematic stratified cluster sample with unequal cluster sizes

Allows design-based analysis and inference
Reference data – field survey

National forest inventory sample plots
Map products

Map products:

1. Global maps (Saatchi, Yu et al.)
 a. A global height map (Lorey’s height)
 b. A global biomass map

2. A local height map (Trier et al.)
Biomass map assessment

Estimation strategies:

1. Global and local height maps
 a. Use the maps to fit local biomass models: $AGB = \alpha + \beta H + \varepsilon$
 b. Produce a biomass prediction map
 c. Use the map as auxiliary data in a model-assisted estimation

2. Global biomass map, uncalibrated
 Use the map as is in a model-assisted estimation

3. Global biomass map, locally calibrated
 a. Use the map to fit local biomass model: $AGB_L = \alpha + \beta AGB_G + \varepsilon$
 b. Produce a locally calibrated biomass prediction map
 c. Use the map as auxiliary data in a model-assisted estimation
Biomass map assessment

A: Global biomass map uncalibrated

Calibrated maps:

B: Locally calibrated global biomass map

C: Biomass prediction map from global height map

D: Biomass prediction map from local height map
Biomass map assessment

Evaluation criteria:
1. Precision of biomass estimates (standard error) when maps are used to support the estimation relative to precision of other estimates (relative efficiency; RE*)
2. Bias estimate for stratum h

\[
\hat{B}_h = \frac{1}{N_h} \sum_{k \in U_h} \hat{b}_k + \sum_{U_i \in S_h} \frac{1}{N_i} \sum_{k \in S_h} (b_k - \hat{b}_k)
\]

*Synthetic estimator
*HT-like bias estimator

*Calculated with variances rather than standard errors
Biomass map assessment

Main findings:

1. Uncalibrated global biomass map:
 a. Statistically significantly biased: 44-76%
 b. Precision much poorer than using only the field sample (RE=0.4)

2. Locally calibrated global biomass map
 a. Greater precision than using only the field sample (RE=1.7)

3. Local biomass maps from global and local height maps
 a. Equally precise, no additional benefit of local height map (RE=1.9)
 b. More precise than locally calibrated biomass map
Biomass map assessment

Conclusions:
1. Global biomass map has no value without local calibration
2. When calibrated locally, global biomass map can still help improving precision of estimates – potentially representing great savings in monetary terms
3. No benefits found for local maps versus global maps, given available local calibration data