EO Support to UNFCCC Paris Agreement

Simon Pinnock, ESA Climate Office

CCI Colocation, St Hugh's College, Oxford, 27 March 2019
UNFCCC Paris Agreement (2015)

• Entered into force on 4 Nov 2016
• Will drive climate policy for the next 2 decades at least

The Paris Agreement defines three major aims:

• **Mitigation**: limiting the temperature increase to well below 2.0°C and targeting 1.5°C above pre-industrial levels, by reducing the net emission of anthropogenic GHGs to the atmosphere.

• **Adaptation**: increasing resilience to the adverse effects of climate change.

• **Finance**: making finance flows consistent with a pathway towards low greenhouse gas emissions and climate resilient development.
The bottom-up, pledge and review, architecture is more important than where EO is mentioned in the Agreement.
The ambition cycle

Action
(Mitigation, Adaptation, Finance)

Means of Implementation

- Enhanced transparency framework
 - 2024 (+every 2 years)
 - (LDCs & SIDS)

Indicators for Mitigation Adaptation

- NDCs
 - 2020, 2025, 2030...
- Adaptation communication

Global Stocktake
2023, 2028, 2033...

AMBIATION
progressive strengthening

Transparency to build trust and confidence:

- GHG Inventory
- Progress on NDCs
- Support provided
- Support needed and received
- Adaptation
- L&D

Slide credit: J. Post, UNFCCC
GCOS Requirements

• **GCOS Implementation Plan** (GCOS-200, 2016) defines a new ECV: *Anthropogenic greenhouse-gas fluxes*, *i.e.* emissions and removals from all managed-land, fossil-fuel, industrial, waste-treatment and agricultural sources.

• **GCOS: Systematic Observations and the Paris Agreement** (GCOS-222, 2018): Adaptation, GHG emissions & C-cycle, Sinks and REDD+, L&D, Global Stocktake, Capacity Building, Transparency Framework, ...
Example Response to Paris on GHGs (EC)

Considered building an "independent operational GHG emission monitoring and verification support capacity" based on a combination of modelling, space-borne observations, and ground-based monitoring networks.

- Reduce uncertainties in national inventories
- Identify further opportunities for GHG emission reduction
- Track changes in the natural carbon-cycle
Figure 12. Schematic overview of a fossil fuel emission inversion system showing the various required model blocks as well as the potential observations that can be used to constrain the system.
GCOS Requirements

Closing the carbon budget

| Targets | Quantify fluxes of carbon-related greenhouse gases to +/- 10% on annual timescales.

Quantify changes in carbon stocks to +/- 10% on decadal timescales in the ocean and on land, and to +/- 2.5 % in the atmosphere on annual timescales. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Who</td>
<td>Operators of GCOS-related systems, including data centres</td>
</tr>
<tr>
<td>Time frame</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Performance indicator</td>
<td>Regular assessment of uncertainties in estimated fluxes and inventories</td>
</tr>
</tbody>
</table>
Closing the global water cycle

Targets
Close water cycle globally within 5% on annual timescales

Who
Operators of GCOS-related systems, including data centres

Time frame
Ongoing

Performance indicator
Regular assessment of the uncertainties in estimated turbulent flux of latent heat
GCOS Requirements

Closing the global energy balance

<table>
<thead>
<tr>
<th>Targets</th>
<th>Balance energy budget to within 0.1 Wm(^{-2}) on annual timescales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who</td>
<td>Operators of GCOS-related systems, including data centres</td>
</tr>
<tr>
<td>Time frame</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Performance indicator</td>
<td>Regular assessment of imbalance in estimated global energy budget</td>
</tr>
</tbody>
</table>

Diagram:
- **Energy**: Radiation Budgets, Temperature, Wind speed & direction
- **Albedo, Latent and Sensible Heat fluxes, Land Surface Temperature**
- **Ocean Surface Heat Flux, Sea Surface & Subsurface Temperature,**

Slide credit: C. Richter, GCOS
Energy
Radiation Budgets, Temperature Wind speed & direction
Albedo, Latent and Sensible Heat fluxes, Land Surface Temperature

Carbon
Carbon Dioxide, Methane, Soil Carbon, Above-ground Biomass, Fire, GHG Fluxes

Water
Sea Surface & Subsurface Salinity, Sea Level, Sea Surface Temperature

Soil Moisture, Runoff, Evaporation, Lakes, Groundwater, Cryosphere, Water ice

Biosphere

ESAs Slide credit: C. Richter, GCOS

ESAs Slide credit: C. Richter, GCOS