Overview of Phase 1 of Fire_cci

During the first phase of the Fire_cci project several critical improvements over existing European Burned Area (BA) products were achieved. First, a detailed user requirement consultation was performed and used to tailor the products that would be obtained within the project. Following these user needs, products were offered in two formats: monthly pixel (300 m resolution) in continental tiles, and 15-day grids (0.5 degree) in global tiles, following international standard file formats (GEOTIFF and NETCDF, respectively).

The algorithms were developed to obtain BA maps from European Medium Resolution sensors. Three years of global burned area estimates (2006-2008) were produced from MERIS FRS data. In parallel, a complete validation dataset was developed, following the CEOS Cal/Val protocol, together with new validation metrics to assess the accuracy of the Fire_cci BA products, as well as other BA collections. Finally, the Climate Research Group evaluated the adequacy of the new BA datasets to model fire emissions and vegetation dynamics.

The aims of the Fire_cci project were threefold. First, the objective was to obtain a product adapted to climate modellers' needs. For this, user requirements were defined, in terms of accuracy, bias, uncertainty, spatial consistency and stability. Second, the project aimed to develop the methods to generate long and accurate BA time series from several European sensors. Finally, improvements of climate vegetation carbon models when using the new BA data were tested. At the end of Phase 1, three years of MERIS FRS data (Figure 1) were processed to obtain the BA product.
According to the accuracy assessment, the Fire_cci product was better balanced than existing BA products and showed less underestimation, although further efforts are necessary to improve BA accuracy, particularly in areas with low fire occurrence. The Fire_cci product was found to be significantly better than other European BA products. It also revealed a higher detection of smaller fires than previous BA collections.

Product intercomparison between Fire_cci and the Global Fire Emissions Database (GFED) showed similar global spatial and temporal patterns, however differences appeared when looking at the regional scale. An example of these differences is shown in Figure 2, where an extreme fire event that took place in Eastern Europe during Spring 2006 is represented. The Fire_cci product appears to capture this event more realistically than others, most likely due to its enhanced ability to detect smaller fires.

The user assessment showed the potential for these data products to estimate GHG fire emissions and dynamic vegetation models. The results obtained during the first phase of the Fire_cci project were considered promising, especially with the perspective of the upcoming launch of OLCI, the follow up version of MERIS, and SLSTR, an optical and thermal sensor, both on board Copernicus’ Sentinel 3.

Towards Phase 2 of Fire_cci

In the second phase of the project the major objectives are the processing of longer time series in order to obtain the data needed for climate studies and the generation of a small-fire database for the African continent, together with continuous improvement and development of the existing BA retrieval methods and climate assessment of the BA products.

The project kick off date for the second phase has been fixed for the 7th and 8th of September 2015. At the beginning of the project the full MERIS archive (2002-2012) will be processed with the newest version of the algorithm. The improvements made for this release will increase the number of parameters detected compared to the previous version, as well as reducing omission errors. In parallel, the developed algorithms will be adapted to other sensors such as PROBA-V, OLCI and MODIS. Improvements on the uncertainty characterization and validation are also foreseen. The use of new sensors and methodologies will extend the time series (from 2000 to 2017) and improve the current results. This time series is of great interest for the users of the Fire_cci data. Climate and vegetation modellers involved in the team will be testing the new products and extending their analysis for longer time series.

In addition, for the first time worldwide, a small fire database of a large continent (Africa) will be obtained, based on Sentinel-2 MSI data.

Figure 2: Burned area in Eastern Europe detected by Fire_cci, GFED4 and GFED3 in April/May 2006. GFAS shows the spatial pattern of fire radiative energy (FRE) estimated from the MODIS active fire product.
Access to data products

The final version of the Fire_cci Burned Area (BA) products is publicly available at https://www.geogra.uah.es/esa/. The products include BA pixels at full MERIS resolution with date of detection, confidence level and land cover burned in GeoTIFF format. The BA in the Grid products includes total BA, standard error, fraction of observed area, number of burned patches and sum of BA for each land cover type, all in NETCDF format.

The products are available for the dates 2006 to 2008.

Forward look

The work from Phases 1 and 2 of the Fire_cci project implies a huge step forward on the characterization of the fire disturbance ECV. Additional future work on the Fire ECV that’s not included in these two phases could build on the tools already established within the CCI and increase its relevance. In the framework of a climate change programme, progress in fire disturbance implies better characterisation of the impact fire has in terrestrial and atmospheric domains.

Four major lines of research can be identified:

• Extending the small-fire database foreseen in Phase 2 for Africa to longer periods and to other fire sensitive regions, where deforestation fires are very critical, particularly to SE Asia (where there is a big problem with peat fires) and Latin America. This small-fire database would greatly help to reduce current uncertainties in GHGs derived from biomass burning. The contribution of small fires (<50 ha), is estimated to be 35% of the total burned area, with particular relevance in tropical regions.

 • In terms of estimating emissions from fires, the generation of combustion completeness is of major relevance, as currently, the amount of biomass consumed by the fire is estimated indirectly. In addition, a fire severity product would also help relevant ecological topics such as recovery, ecosystem resilience, land use changes, and post-management strategies.

 • Further exploitation of European satellite capabilities: integration of the products developed with geostationary and polar-orbiting satellites would have a great impact on the way the different stages of a fire are characterised. Different quantities of gases and different gases and particles are released during the flaming and smouldering fire phases. Use of high temporal resolution information coming from geostationary satellites, combined with the existing fire products, will contribute to better characterize the duration of the different stages, therefore decreasing the uncertainty of the emissions estimations.

 • Improvement of current dynamic vegetation models with better biomass burning information is important. Most current models greatly simplify the role of fire in emissions and vegetation regeneration, particularly in the case of deforestation fires. This has implications for the carbon cycle, so work still needs to be done on the use of carbon vegetation and dynamic vegetation models with the new products developed in Fire_cci.

Figure 3: Global monthly fire emissions of carbon estimated with the ORCHIDEE global vegetation model using Fire_cci data from the first phase, compared to GFED 3 data. Use of Fire_cci data in global vegetation and climate models will be extended in the second phase of the project.
Publications and presentations

The Fire_cci project has been presented at several international conferences and dedicated workshops. Key conferences have been the EGU in Vienna, GOFC-GOLD IT in Italy, Russia and the USA, the SELP-ER in Brazil, the International Forest Fire Research Conference in Portugal and ISPRS conferences in Australia and South Africa.

Peer-reviewed publications from the Fire_cci team include:

Upcoming activities

The project will be represented at the following conferences and meetings:

The 6th ESA CCI Colocation Meeting, 29 Sept.–1 Oct. 2015, ESA-ESRIN, Frascati, Italy.

10th EARSeL Forest Fire Special Interest Group Workshop, 2 -5 Nov 2015 - Limassol, Cyprus.