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1. Executive Summary

The European Space Agency Climate Change Initiative on LanceStefaperature (hereaftdrSTcci)

aims to provide Land Surface Temperature (LST) LST Essential Climate Variable (ECV) products and validate
these data to provide an accurate view of temperatures across land surfaces globally over the past 20 to

25 years.

This Algorithm Theoretical Badbocument (ATBD) provides a detailed definition of the Land Surface
Temperature (LSNalid observation identificatiomnd retrieval methodologies to be used for LST data
products provided by.STcci The algorithms descéal in thisdocument have been identified as the best
algorithms for a future climate quality operational system during an open algorihtercomparison
round-robin. This document describes retrieval algorithms selected for use in deriving LST from Thermal
Infrared and Microwave sensord.hese are the University of Leicester (UOL) algorithm and Generalised
Split Window (GSW) algorithm for thermal infrared datad the NeuraNetwork-EmissivityAll-channels
(NNEARIgorithm for microwave data.

Informationis also preided in this document for any cloud clearing methods used; auxiliary datasets;
uncertainty models and propagation of uncertainties; and calibration data$ées.methods outlined in

this document will be implemented in an etolend system to gnerate thefirst LSTcciclimate data
records.
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2. Introduction

The European Space Agency Climate Change Initiative on Land Surface Temperature (h&Eetier

aims to provide Land Surface Temperature (LST) LST Essential Climate Variable (ECV)proaigztea
thesedata to provide an accurate view of temperatures across land surfaces globally over the past 20 to
25 years.

This Algorithm Theoretical Basis Document (ATBD) provides a detailed definition of the Land Surface
Temperature (LSTlear skydetedion and retrieval methodologies to be used for LST data products
provided byLSTcci The algorithms described in this document have been identified as the best
algorithms for a future climatguality operational system. The retrieval algorithmere selected during

an open algorithm intercomparison rouardbin which assessed the performance of a number of different
LST retrieval algorithms for a set of specific thermal infrared and microwave satellite s&RIB6&].[

The methods outlined in this @oment will be implemented in an ertd-end system to generate the first
LSTcciclimate data recordsA flow chart summarising the algorithm processing is providdeigarel
for thermal infrared sensors and kKigure2 for microwave sensors

Fractional Vegetation — Snow Mask ]—> Land Classification —
. — Biome Precipitable Water —
Auxiliary
Regression —
Emissivity —1 Profile Data
L1 Data —> Cloud Mask > Coefficients
Simulation

Validation

v
LST 4J—> LST Uncertainty

—> L3U Processor -

!

L3C Processor
|

LST 4J—> LST Uncertainty

L2 Product

L3C Product

Figurel: Data flows forLSTcciEC\single-sensomproduct prototype production systerfor thermal infrared
sensorsFor merged productthe algorithms areapplied toharmonised L1 data processed through to L3U and
then mergedto form L3S Products
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Figure2: Data flows for the SSM/I and SSMIS LST ECV prototype production system.

L3 Product

It is expected that ongoing algorithm assessmenthvéltarried out for each subsequent reprocessing to
ensure the best performing algorithm is always implemented. This will aim to produce the most accurate
LST retrieval for eadiSTcciproduct. Theréore, this document will be updated as necessary.

Note, for merging TIR and MW an experimental approach will be taken not necessarily utiliséxistirey
algorithms.

2.1. Purpose and Scope

This document presents the algorithm theoretical basis of retrievethwdologies to be used for LST data
products provided by.STcci

2.2. Reference Documents

The following is a list of documents with a direct bearing oncttretent of this report. Where referenced
in the text, these are identified as R®, where 'xx' is the number in the table below.

© 2019Consortium CCI LST
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The following terms have been used in this report with the meanings shown.

Term ‘ Definition

ATSR AlongTrack Scanning Radiometer

ATSR AlongTrack Scanning Radiomet2r

AATSR Advanced AlongTrack Scanning Radiometer

ALB2 ATSR Land Biome Classification

ATBD Algorithm Theoretical Basis Document

BT Brightness Temperature

Cc3S Copernicus Climate Change Service

CAMEL Combined ASTER and MODIS Emissivity for Land
ccCl Climate Changanitiative

CDR Climate Data Record

ECMWE European Centre for MediwwRange Weather Forecasts
ECV Essential Climate Variable

Envisat Environmental Satellite

ERA5 ECMWF Ranalysis 5
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ERS European Remot&ensing Satellite
ESA European Space Agency
GEO CeostationaryOrbit
GSW Generalised Split Window
IGBP International GeosphergBiosphere
ISRF Instrument Spectral Responge@inction
LEO Low Earth Orbit
LSE Land Surface Emissivity
LST Land Surface Temperature
LSTcci ESA CClon LST
MODIS Moderate Reslution Imaging Spectroradiometer
MW Microwave
NN NeuratNetwork
NWC SAF Satellite Application Facility ddupport to Nowcasting & Very Short Rang
Forecasting
RTM Radiative Transfer Model
RTTOV Radiative Transfer for TOVS
SEVIRI Spinning Enhancedsifble and InfraRed Imager
SLSTR Sea and Land Surface Temperature Radiometer
SSM/I Special Sensdvlicrowave/Imager
SSMIS Special Sensor Microwave Imager Sounder
SST Sea Surface Temperature
Sw Split Window
TCWV Total Column Water Vapour
TIR Thermal Ifrared
uoL University of Leicester
VCM Vegetation Cover Method
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3. Sensor Descriptions

The algorithms described in this ATBD will be used to derive the folldv@hgciproducts from:
x ATSR2 and AATSR
x SLSTR
x MODIS
x SEVIRI
x SSM/I and SSMIS

Descriptions andummary information for the satellite sensors noted above are provided in theniolt
sections.

The Along Track Scanning Radiometer (ATSR) series of instrumcrdeATSR2 and AATSR (Advanced
AlongTrack Scanning Radiometefjhesewere launchedon board European Space Agency (EsBif)
synchrorous, polar orbiting satellite€RS in April 1995, and EnviséEnvironmental Satellitéh March
2002, respectivelyThelastof these instrumentg AATSR provided itsfinaldata on 8th Apli2012.These
ATSRs therefore praleé approximatelyl7 years of data. Continuation of this sensor series occurred,
albeit with a data gap, with the laeh of the Sea and Land Surfabemperature Radiometer (SLSTR)
sensors on board Sentin8lsatellites (se SectiorB.2).

All ATSRnstruments used similar orbits and equator crogsiimes ensuring a high level of consistency

With a swath width of 512km, AATSR is able to provide approximatddy global LST cowage with a

repeat cycle of 35 days. The overpass of AATSR is 10:00 (local solar time) in its descending node and 22:00
(local solar time) in its ascending node. For AZ3$Re overpass times are 10:30 and 22:30 in the
descending and ascending nodes respady. The orbit of the ATSRgasvery stable in local crossing

times and no notable orbital driftsccurred.

AATSR has good radiometric accumafdgss than 0.1 K in the midnge of surface temperaturder both
11andvH >Y 0 NR 3IKGY $aca acorBcridrIsiedder 62N d@ppliedio 12> Ybrightness
temperatures[RD-19]), based on two kdckbodies scanned on each scan cycle for calibration and using
Stirling Cycle coolers to maintain the infrared detectors at low noldethree ATSRs hawamilar
specifications withneak Y FNI NER 6bLw0 Kk AYFNI NBR BothwiSRafdl yy St
1 ¢{w KIFIFS GKNBS FTRRAUAZ2YIf @GAaAO0ES OKIyySta I
ATSR datinto the land domainA dstinguishing feature of the ATSRs was the -dungjle (DA) capability

(nadir and forward at an anglef ~55° to nadir). However, only the nadir vievgenerallyutilised in LST
retrievals, LST cciincluded.The rationale on the use of the nadir view ordyprovided in [RE34] which
assessed both SW and DA over topographically flat and homogeneetigkis and found DA algorithms

to be less accuratd-urther information on the algorithm to be used for ATS&d AATSRSTretrievals

in LST cciis givenm Sectior.

The Sea and Land Surface Temperature Radiometer (S8ii€) is based on the principles of AATSR
on board the Sentinel satellites/ and 3B comprises a space element of Copernicus programres
responds to theequirements for an operational and nesgaktime monitoring of the Earth surface over
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a period of 15 to 20 yearSentinel3A was launched ion Td-ebruary 2016, and Sentir@B was launched
on 258" April 2017.

SLSTR is designtd retrieve globalseasurface temperatures to an accuracy of better than 0.3 K and
global land surface temperature to an accuracy of less than 1 K. Like AATSR a dual view capability is
maintained with SLST-Rhe nadir swath being 1420 km, andetbhackward view having swath width of

750 km. This supports a maximum revisit time of 4 days in dual view and 1 day in single view. There are
nine spectral channels including two additional bands optimised for fire monitoring and improved cloud
detection. Thespatial resaltion of SLSTR is 500imthe visible and shortwave infrared channels and 1

km in the thermal infrared channels. The baseline retrieval for the operational ESA SLSTR LST product
consists of aadir-onlysplitwindow algorithm wih classes of coeffemts for eachand coverdiurnal
(day/night) combination.

MODISModerate Resolution Imaging Spectroradiomeiegtruments were launched dmoard two sun
synchronous, neapolar orbiting satellites Terra (EOS AMlauntied on 18 Decembet999 and Aqua

(EOS PM) launched on 4 May 2002, respectively. Each instrument provides a pair of observations each
day acquiring data in 36 spectral bands. T&M@DIS acquires data at approximately 10:30am (local solar
time) in its desending mde and aapproximately 10:30pm (local solar time) in its ascending node; while
AquaMODIS observes the Eauidhapproximately 1:30pm (local solar time) in its ascendiode; and at
approximately 1:30am (local solar time) in its descendiade. The swath width bthese instruments,
2330km, enables these satellites to view almost the entire surface of the Earth every day. The spatial
resolution of the thermal bands is 1 km; with both land surface temperature and land surface emissivity
being coreproducts from thee instruments.

The Spinning Enhanced Visible and Infrared Imager (SEVIRI) is the main sbosod dfeteosat Second
Generation (MSG), a series of 4 geostationary satellites operated by EUMBESAR1. was designed to
observe arearth disk over f&ica, most of Europe and part of South America with a temporal sampling of

15 minutes. Satellite view angles for SEVIRI range from 0° to 80°. The first MSG satellite was launched in
August 2002, and operational observations are availalsiee January 2@0

SEVIRI spectral characteristics and accuracy, with 12 channels covering the visible to the infr&ted [RD
RD56] were unique among sensors dyoard geostationary platformdor several years since the launch

of MSG1. Tte High Resotion Visible Table 5) channel provides measurements with larisampling
distance at the sulsatellite point (SSP); for the remaining channels the spatial resolution is reduced to 3
km at SSP. Level 1.5 data are disseminated to users after being racatifididngitude, which means the
satellite viewing geometry varies slightly with the acquisition time (satellite zenith angles typically differ
by less than 0.Z%etween consecutive observations).
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Tablel: Characteristics of tt SEVIRhstruments onboard Meteosat Second Generation.

Channel Central wavelength Dynamic Range Radiometric Noise
Acentral (M)
VIS0.6 0.635 533 Wm2srm <-Y S/N 10 at 1% albedo
VISO0.8 0.81 357 Wm2sr-m <-Y S/N 7 at 1% albedo
NIR1.6 1.64 75Wm-2sr-m <-Y S/N 3 at 1% albedo
IR3.9 3.92 335K 0.35K at 300K
WV6.2 6.25 300 K 0.75K at 250K
WV7.3 7.35 300 K 0.75K at 250K
IR8.7 8.70 300 K 0.28K at 300K
IR9.7 9.66 310K 1.50K at 255K
IR10.8 10.80 335K 0.25K at 300K
IR12.0 12.00 335K 0.37Kat 300K
IR13.4 13.40 300 K 1.80K at 270K
HRV Broadband (about 0.4 460 Wm2srm <-Y S/N 1.2 at 0.3%
1.1) albedo

The MW LST product will be built using radiances observed by the Special Sensor Microwave/Imagers
(SSM/I since 1987andits more recent version the Special Sensor Microwave Imagers Sounder (SSMIS
since 2003). This family of instruments flies on board Defense Meteorological Satellite Program (DMSP)
nearpolar orbiting satellites, and provides passive microwave obsienstwice a day at 19.35, 22.235,

37.0, and 85.5(SSM/1)/91.665(SSMIS) GHz with an incident angle of 53 degrees resulting in ground
resolutions for SSM/I (SSMIS) of 69x43 (73x41), 50x40 (73x41), 37x28 (41x31), and 15x13 (14x13) km,
respectively. Verticall and horizontally polarized BTs are available at all frequencies, apart from the
22.235 GHz channel, which is only vertically polarized. Instrument swath widths are close to 1400 (SSM/I)
and 1700 (SSMIS) km, providing-2a days revisiting time dependiran acaqisition latitude. The source

of brightness temperatures will be the Fundamental Climate Data Record of Microwave Imager Radiances
[RD50], where the brightness temperatures from the different SSM/I and SSMIS instruments have been
inter-calibrated b reduce changes related to intexensor differences.

© 2019Consortium CCI LST
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Figure 3: Local ascending equator crossing time for SSM/I and SS(eb8rtesy of Remote Sensing sB3ms,
http://www.remss.com/support/crossingtimes/). Only the FXX instrumentre relevant here.

At a given time, a number of these instruments can be flying with slightly different local overpassing times,
with a local time of the ascending node around 18 hokigure3 (courtesy of Remot&ensing Systems)
shows the local ascending equator crossing time. The variations in overpassing time are related to the
original orbit injection of the DMSP satellites, and the subsequent orbital drift, which is not corrected
during the lifetime of the msions. This means that when deriving climate data records (CDRs) from these
observations diurnal cycle aliasing will be g#pt, and need to be taken into account when using the
CDRs.

© 2019Consortium CCI LST



Algorithm Theoretical Basis | Ref:  LSICCID2.2ATBD
SR N !cand sur{ace Document Version: 1.1
- ;" o peratiire Date: 19-Sep2019
WP2 ¢ DEE2.2 Page: 15

4. Retrieval of Land Surface Temperature from Thermal
Infrared Sensors

The retrieval algorithmsused inLSTcci are either TIRor Microwave (MW) algorithms, which exploit
different parts of the éectromagnetic spectrum to derive LST.

In the LSTcciopen algorithm intercomparison rourAgbbin, the performance of different LST rietval

algorithms for a set of specific thermal infrared and microwave satellite sensors was agseiskadify

the best algorithms for a future climate quality operational system. dligerithms choseifor TIRwere:
% the University of Leicester (UOLp@adithm (TIR)

% for the Advanced Alongrack Scanning Radiometer (AATSR) LST ECV dataset
% for the AATSR / Sea ahdnd Surface Temperature Radiometer (SLSTR) / Moderate Resolution
Imaging Spectroradiometer (MODISPR
x the Generalised Split WindovsSVWY Algorthm (TIR)

v for the MODIS andpinning Enhanced Visible and InfraRed ImegEWV(RLST ECV dataset
v for the Memed Dataset (AATSR / MODIS / SEVIRI)

In the following setion a description of TIRetrievals is presented, along with a description of the matail
algorithms chosen for use k5Tcci The MW retrievals are described in Section

In the TIRegion of the electromagnetic spectrum, absorption and emission effects, mainly due to the
presence of water vapour, are responsible &tenuation of the surface signal observed by a satellite

NF RA2YSUOSNW !'a &4dzOKX AyauNdHzySyida 2y alaSttAGasSa ¢
use spectral windows where absorption and esios effects are minimised and the surface ssin
aA3adylrf A4 KAIKSNY DSySNItfte GKS mnop G2 mMH®Pp >Y
GAYR2g NBIAA2YyO0 Aad dzaSR F2NJ [ {¢ NBIGNRSII §notladdzNILI2 &
subject to solar signal effects. Even this region of high transmission, correcting for atmospheric
attenuation is still a necessity for accurate LST retrievals. Accurate LST reaisvedquire algorithms

which correct for emissivity effest

Both of the TIR retrieval algorithms chosen for useSi cciare so-called splitwindow (SW)algorithms,

which utilisethe radiances reaching the sensor in two channels whose band centres are close in
wavelength.This SWmethod provides an estimatef the surface temperature from two brightness
temperature measurements and assumes that the linearity of the relationship results from linearisation
of the Planck functionahich isgenerally a good assumption), and linearity of the variation of atmospher
transmittance with column water vapour amouas the most important trace ggsometimes a poor
approximation). Foretrieval of LSTwhere the emissivitgver landcan below and where emissivity varies
significantly with surface cover and typeompaed to Sea Surface Temperature retrievals over open
ocean the surface and atmosphere must be treated as a coupled system. There are two approaches to
solving the problem of LST determination using 8Wchannels. The first assumes that the effects due

to the land and atmosphere can be decoupled and the method is then to separate out the surface effects
(emissivity) from the atmospheric effects (water vapour). The second approach is to accept that the
surface and atmosphere are coupled, solve the problerthaut taking explicit account of either
emissivity or water vapour, but to allow for their effects simultaneously. The difficulty of the first approach
is that an estimate of the emissivity must be provided or retrieved and valid&®ebust nethods to
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retrieve both LST and asaivity simultaneously require multiple thermal channets are not feasible for
instruments with onlytwo channels in the 84 micron rangeThere isalsoa lack ofglobal highspatial 6 XX
1kml YR GSYLRNIf 06X eisiyity dafasets cokkBrg #hé eufirdngeyrequired for
multi-decadal data records These restrictions make thérst approach very challenging and the
recommendation is to follow the second approach.

The approach el in LSTcciis the second approach wdh is outlined mathematically in the following
section. Having established that there is a linear relation between the surface leaving radiance and the
two SWradiances for the land, the problem is reduced to one of multiple, linear regression. Theaktrie
coefficients, derived by regression, have physical meaning and physical constraints calis&e ati
ensure their validity.The temperature that is reteved using the algorithm is a radiative surface
temperature; it is appropriate for use as the tperature corresponding to the radiative flux density from

the surface (i.e. StefaBoltzmann law). When used in modelling studies care must be taken to ensure
that the model output temperature corresponds to the LST product definhbiglow.

The definition of LSTfronfIRA & G KS STFFSOGA GBS NIRAZ2YSGONRO GSYLISNI
AYyaidNdzySyd FTASER 2F OASg o témpdrature of thé BprsLdadedn badeNddl K S N
conditions and to the effective emitting temperatu2e¥ @S3ISGF A2y GOl y2LIA Sa¢ |
of the top of a canopyFor mixed sceneskin temperatureis the aggregated radiometric surface
temperatureof the ensemble of components within the sensor field of view.

4.1.1.Mathematical description

The mahematical development of the problem of determining LST from a satellite radiometerSwith
channels follows closely that of [RID [RD2] and [RD3, RD4, RB5]. These papers show that under
certain assumptiongthese are introduced at each steglbw), it is possible to formulate the surface
leaving radiance in terms of a linear combination of radiances reaching the satellite sensor in two channels
close in their respective central wavebands.

The proposed. STproductswill providepixel by pixeLSTsising only the nadiBW(11 and 12 um) channels

of the satellite instruments The producs will utilisethe cloudfree top-of-the-atmosphere 11 and 12 pym
brightness temperatures and ancillary information to correct for water vapouomdt®n and spectral
emissivity effects The product is generated using a regression relation and-upokables that
accommodate global and seasonal variations in the main perturbing influences. The mathematical basis
for the formulation is provided here.

The starting point foany LST algorithm is a consideration of the thermal radiative transfer equation for
monochromatic radiation emitted and reflected from a surface that is assumed homogenous, and
received by a spaceborne radiometer. The homogeneoea & defined by thersular fieldof-view of

the radiometer. The radiance received at the sateltit'/ne radiometer may be written,

ol C t alddNF{Oogivap

ale
0 6y Poyar s
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Where

x "Ois the radiance at the radiometer,

x 0 is the surface leaving radiance,

x 0 is the radiance from the atmosphere,

x tis the atmospheric transmittance,

x ' is wavenumber,

% @is height

x  Cis the filter response functionof the radiometer,
% ais a unit vector defining the view direction,
xaka I dzyAl SSOG2NI RSTAYyAYy3d (G(KS adzyQa RANBOGAZ
x "Yis the surface temperature,

% "Yis the atmospheric temperature,

x T is the surface emissivity,

x 0 is the Planck functign

x " is the surface reflectance,

X

‘O is the downwelling sky radiance.
If the surface is in thermodynamic equilibrium with the atmosphere, then accoifigg YA NOKK 2 F F Q2

V3 aBwl  ydp P yar #u Bwe B

We assume that the surface is Lamberti@ihis assumption is valid sinttee Lambertian approximation
of the surface reflection does not introduce a significant errahermal infrared regiofRD3, RD70].
Theri and” are ndependent of direction,

I p
The flux density of sky radiation is:

j
O "0 Al-@ EIRR%
Where—is the satellite zenith view angle, abids the satellite azimuth view angle.

O T6"Y pfJ 0

This leads to the definition of surface temperaturesassed by a spadmorne infrared radiometer:
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This definition has the attribute thaty is directly measurable from space (effr@m the AATSR), is valid
at any scale, and for a homogeneausface it is equivalent to the thermdynamic temperature.

¢KS RSTAYAGAZ2Y Aa 2yfe aAGNROGEE (GNHZS F2N Y2y 2O0KN
width) with relatively smooth filter response functions, the variation of the Planck timmowith
wavenumber is small. Thusiantegration of the various quantitiesQ(f , 0 , etc.) over the filter

function is appropriate.

The definition is only strictly valid under the assumptions outlined alooee typical surface temperatar
ranges Under most circustances we expect the assumptions to remain valid and violation are weak so
that the definition (and hence derivation of the surface temperature) is approximately correct.

Determination of the quantities in (9) can be done byimas means. The approactewave taken follows
[RD4] and [RB5], and shows that the surface temperature may be written as a regression relation
involving the brightness temperatures in the 11 and 12 pm channels. The relation takes account of
atmosphericabsorption (water vapour)rad spectral emissivity effects.

4.1.2. Emissivity

It is weltknown that variations in surface properties cause variations in the emission of radiation from
natural surfaces and thisomplicates LST retriev&®ne major source of variation is due to the structural
properties of the surface and this affects the efficiency of emission and reflection of thermal radiation
from the surface.

There are substantial variations in surface emissivityich is unitlesgyver the gloke. The lowest values

occur in sandy regits where the emissivity may be as low as 0.92 at 1IRIx6]. Over highly vegetated

surfaces (e.g. closethnopy trees) the emissivity is known to be spectrally uniform and high>(0.98,

e.g. [RD7]). Within a particular surface type the variatioof emissivity is not well known, but

YSI adz2NBYSyia &ada3sSad AdG ArAa avyltt £ pnonmz SEOS
vegetation. Thus the greatest concern for deriving LSTs is the varimtaween surface types rather than

the variation wihin surface types.

The scheme for accounting for emissivity variations between surface types relies on a surrogate measure
of the surface structure; in this case we have used fractional vegetation amgdevegetation type. [RD

8] suggestaising a clasication based emissivity system for MODIS LST products. Their system uses 17
LD.t Wadl dA OQThisis¢Rlicabld @ BaNd Cover GCE(ISIowiny of transfer functions

from one classi€ation system to the otherAlso of concern is théirectional variation of emissivity.
Generally, the variation is strongest with view angles greater than 50° or so. Little is known of the variation
with azimuth anglealthough over real surfaces emisghangular effects are likely to be associateith

induced changes in the actually observed scene.

While it is important to note the role that emissivity plays in determining the emission and reflection of
thermal radiation from the land surface, it muse stressed thatew field measurements of emisgly at

scales appropriate t{for examplethe AATSR pixel sirave been madealthough increasinglyecoming
available. Thus while it is possible to retrieve an emissivity from thermal satellite measurements, its
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validation is problematic. Moreover, nod the emissivity schemes proposed can claim accuracies better
than £0.02. It is likely that the retrieval ens and biases are #mapped from atmospheric transmittance
errors, since the radiative transfer problem shows that the surface emissivity amdspheric
transmittance always appear as a product. Separating their effects accurately suggests that the
atmospheric transmittance must be known at least to the same accuracy.

These factors should be borne in mind in considering the derivation of thealg®rithm itself in the
following sectionsDetails of the auxiliary emissivity products usedd 8T cciare given in Sectiob.4.1

4.2.1. SplitWindow (SW)Approximation

By utilising the meamalue theorem it can be shown that as in [RZ):

0 P 5 va ! T@eem
p T T a
Where
x "Y& is the atmospheric temperature profile,
% @is height,
x 1 dhteeis the transmittance profile between two heitgh

The transmittance may be written,
toab AP Qa0 d OARe

Where
x "Q is the absorption coefficient,
x 0 a is the vertical profile of the absorber amount.

This leads directly to th8Wformulation. Conside two wavelengths (e.g. SLSTR 11 and 12 um channels
and introduce appropriate subscripts):
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Where
x T —ﬁ
x 3 i h
X | 38
x @ istheradianceat ' that yields a temperature equal for . Thus,
x @ 6 "Y 8

Below are eme special caseshichare worth considering:

% No spectral emissivity dependence:

pr.. I,
; -

x OYAAaAQPAGRE de)m 0SPId aSt adNF
6 p IO ree

Bylinearising the Planck function about a mean atmospheric temperature, the algorithm can be
formulated in terms of brightness temperatures.

T o6 —

6'RY 6'RY — Y 7Y
T Y

After some manipulation,

0YYH @Y &Y

X

e
|

o

This mathematical development shows that under the assumptitgigdighted at each step in the process
it is possible to relate the brightnesesmperatures in the 11 and 12 pm channels linearly to the land
surface temperature.

Althoughi 11 and7 12are nonunity for land surface emissivities, from a radiative transfer poirtiew,
they are sufficientlylose to one for the approach to be ampriate.
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4.2.2.UOL Algorithm

TheUOL algorithm will be used ihSTcciCycle For the ATSRnd SLSTR serieST ECV datasetnd the
AATSR / SLSTR / MOOI®R Below is the description of this algorithm as provided inRMASRHD64].

The standard algorithn{RD9], for (A)ATSR and SLST$8s a nadionly (SW) algorithm with classes of
coefficients for each combination &fnd coverdiurnal (day/night) condition. The physics in principle are
the same as for other SW algibms, sich as [RELO] which also applies coefficients to a combination of
emissivity, water vapour and BT differences. For-IBDnorHinearity is accounted for in the quadratic
term, where here it is parametrised across the swath. The full form ofatberithm is presented as
follows:

D "Y'YQOAA pRO Q& p QO "Qay,
p Qoup Y Y T 7
QG p Qo Q@ p QR Y

where the six retrieval coefficienss, av,, bs,, by, Gsiandc,, are dependent on thé&and coveli), fractional
vegetation cover (f) the retrieval coefficientss, bsjandcs;relate to bare soil (f = 0) conditions, aad,
bviandcy,relate to fully vegetated (f = 1) conditions. Tinactional vegetation cover (f) and precipitable
water (pw) are seasonally dependent whereas ldred cover(i) is invariant [RE21].

The retrieval parameters d and m are empirically determined frafidation and control the behaviour

of the algorithm forSI OK T SyAGK @ASgAy3a y3aftsS o6°0 ONR&Aa
increases in atmospheric attenuation as the water vapogreases, an effect that is accentuated with
increasing zenitkiewing angleThe parameter m is supported by previatisdies [REL1], which suggest

a nonlinear dependence term on the BT difference FI1L2 would elicit improvement in the accuracy

of the LST retrievals. The rationale here is that the BT differgmceases with increasing atmospheric

water vapour, si®S | GG SydzZ A2y RdzS G2 &6F GSNJ @I L2 dzZNJ A a4 3INE

The nature of the algorithm means that land surface emissivity is implicitly dealt with through the
regression of retrieval coeffients toland coverand bare soil / fully vegetated gts. In other words,

while LSE is not an estimated output the algorithm still uses LSE knowledge, any uncertainty of which is
propagated in the LST derivation. This knowledge is passed to thtlaig through theland coverand
fractional vegetation state, which themselves are regressed to emissivity states in the coefficient
generation. Dynamic Fractional Vegetation Cover (FVC) ancillaryitidia retrieved from auxiliary data.

For the generation of the retrieval coefficients for ea¢hind covecdiurnal (day/night) combination

vertical atmospheric profiles of temperature, ozone, and water vapour, surface andsodgace
conditions and the surface emissivities are required. Theséngut, in addition to specifying the spectral
response functions ofhie instrument, into a radiative transfer model in order to simulate TOA BTs.
Retrieval coefficients are determined by minimizing th@d2m (Euclidean norm- whichis calculated as

the Euclidean distance fromthe origig ¥ G KS Y2RSt )FAGGOAY3I SNNRBNI on[ { ¢

4.2.3.Generalised Split Window (GSW) Algorithm

The GSW algorithm will be usedLi8TcciCycle Ifor the MODIS and SEVIRI LST ECV datasets as well as
the Merged Dataset (AATSR / MODIS / SEVIRI). The generalised split wirtdithhmalg aview-angle
dependentsplitwindow algorithmproposed for LST retrieval BRD12]. It isbased around channels in

the 11 and 12 pm regions.
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The success of the generalized splihdow LST algorithm depends on knowledge of the band emissivities
for real land surfacedn the LSTcciGSW method, emissivity information will be used explicalyer
than incorporatng this information implicitly througHand covercoefficients. For example,n the
operational MODIS implementation band averagedsswities for each of the two channels are used

<

[ —--06_RYyQ_

Y
r _6 _AYQ

Where_ and_ are the upper and lower bounds of the channel, Wi thesurfacetemperature. This
parameter is assigned on a pixel basis according to land cover class. In cases of mixed pixels this term is
recalculated based upon the proportion of the piaskigned to each classificatigh similar method will

be used in.STcci Here,- will be derived as:

- ™ - -

Where- is the mean emissivity of the two thermal channated in the GSW algorithra- is the
difference betweerthe two thermal channels, calculated as:

3- - -

Having determined the emissivity of the pixel coefficidhissecan be applied to derivan LST estimate
similar to that given below:

Where C, A and B are coefficients derived from linear regression using simulatec diatae for the UoL
algorithm (Section 4.2.2) but adapted for the GSW. and T2 are the 11 @nl2 pm brightness
temperatures. The coefficientsr GSWare dependent on satellite viewing angledwater vapour Error
analysis [RE0] shows that viewing angle and atmospheric column water vapour must be considered in
the retrieval to achieve highestccuracy over the wide atmospheric and surface conditidhg. bands

for water vapour will be of widtid 5 kgtm™ so that the first water vapour band is frof,15) kgtm2. The
bands for satellite zenith angle will be of width Fhe retrieval coefficients are linearly interpolated
between viewing angle and water vapour bands to minimise step changes.

Radiative Transfer for TOVS (RTTOV) is a fast Radiative Transfer Model (RTM)NWR3AHRD25].

It is an efficient radiative transfer forward model for the visible, irrrd and microwave wavelengths. In
contrast to models using lineby-line methodology, RTTOV conceptualizes the simulation in terms of
channel radiances. It therefore requires both an Instrument Spectral Response Function (ISRF) and a pre
calculated set of coefficients relating the channel to sensitivities taouaratmepheric parameters.

These coefficients parameterize the gas contributions to transmittances associated with the profile. These
requirements allow significantly increased computational speed in RTTOV compared to thellime
methodology [RE26]. Yet ths increase in computational speed leads to a reduction in the accuraey [RD
27], although negligibl¢RD71], and spectral resolution [RB28] of the simulated radiance3he choice
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of RTTQV facilitateast processing of sufficient numbers of pledito acdquately characterize the entire
range of potential atmospheric states representative of ektd coverclass forhighestaccuracyRD
11]. RTTOV Version 12.3 will be uset 8T cci

RTTOV is used in the UOL_3 (Sectidnl) and Bayesian (Sectigh5.2) cloudmasking algorithms to
calculate the probability of cloud cover in the observations given the background state. Retrieval
coefficients are derived using forward modelligpecifically,egressions between the skin temperature
and the TOA radncesare usedo populatea Calibration Database for determining retrieval coefficients.
RTTOV is also used in the threshold tests employed in the-8&¥Ccloud masking algorithm (Section
4.5.3.

Globally robust, traceable retrieval coefficierite both the GSW and UOL approaclaes generated
using RTTOV, which allows fast pssirg of suftient numbers of profiles to adequately characterise a
wide range of potential atmospheric states representative of ekeid cover Simulated brightness
temperatures and LSTs are derived from RTTOV given inputs of vertical atmospheric profiles, sdrface a
nearsurface conditions, surface emissivities, and the spectral response function of the sensor of interest.
The profile data wilbe provided by ERterim [RD67] for Cycle 1, which provides a large number of
input profiles which encompass the fulinge of atmospheres and surfaces observed by TIR instruments
(Sectiord.6). Aland coverand atmospheric conditionallyniform random sampling strategy will be used

to select a number of clear sky profiles for edaid coverclass. A large sample of locations are selected
randomly acros$and and ice surface types over all latitude and longitude bands to represent the full
range of surface types across land areas-JRD A temporal sampling strategy ensures in@mad inter
annual coveragefor AATSR for exampfeofiles can beselet¢ed from thean arbitrary day aroundhe
middle of each month1E" day of each montHor instance)between 2002 and 2011 with identified
profiles closest to the day and night overpass times of tiellte of interest.The temporal sampling
strategy wil be expanded to additional years in future Cycles to maximise representativeness inter
annualy. Representative emissivity information is extracted for the locations of the profile data from
auxilialy datasets (Sectiof.6). Theseselectedprofilesare theninputs to theRTTOV forward model along
with the various sensapectral response functionRTTOV then yigddhe brightness temperatureand
LSTdor the givensensor ad location and these anesed to generate retrieval coefficients for all cases of
land covettype, fractional vegetation and water vapousing linear regressioifhe Calibration Database
comprises a global set of independent profilasd emissivity value coveringall land cover types and
distributed across all latitude and longitudes and capturing the seasonality of the land surfasell as

the coefficients generated from these profiles

In LSTcciafter Cycle 1(in other words for Cycles 1.5 and &) extended version of the Benchmark
database constructed for the Round RolRY68] will be used to determine retrieval coefficients for TIR
algorithms.This extendedoenchmark dataset willseERA5 Atmospheric profile Data, CAMEL Emissivity
Dataand ESECI Land Cover dateRA5 profiles and CAMEL emissivity data are used as andripuTOV.
Representative profiles distributed across the globe are extracbeduding simulated brightness
temperatures, LST, elevation and other atmospheric informatRepresentative emissivity information

is also extracted from CAMEL for the locatiofishe profile data.The rationale here is that the latest
ECMWEF data and emissivity data is explqitglich are anticipated to be more representative given the
improvedresolution. This alscensures consistency with other COlhese parameters are inpito the
RTTOV forward model along with the various serspectral response functionRTTOV then yields the
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brightness temperaturesand LST$or the givensensor and lodioon and the Calibration Database is
generated as described above for Cycle 1.

The @libration of the GSW used within the L-SAF to retrieved LST for the GEOs (MSG, MTSAT and GOES
series) relies on radiative transfer simulations of TOA brightness tempesperformed with the
MODerate spectral resolution atmospheric TRANSsmittance algorithm (MODTRRING}]. The
difference to using RTTOV is expected to be negligible, but Hayedice will be assessed and if required

a change in model would be antieifed. The simulations are performed for the database of global profiles
of temperature, moisture, and ozone compiled geBofRD64] for clear sky conditions[his SeeBor
database described above was split into two subgatse used for the calibratioof the LST GSW, and

an independent one used for verification of the fitted algorithm. A full description of the methodology to
select the calibration profiles may be found IRD65]. The parameters in the GSW algorithm are
estimated for 8 different clags of total column water vapour (W), up to 6 cm, and for 16 classes of VZA,
up to 78, ensuring that all ranges of atmospheric attenuation within the thermal infrared are covered. In
order to ensure that all W and VZA class have enough representativetogaewide robust parameter
estimations, the radiative transfer simulations are performed over the all selected atmospheric profiles
with the following settings: (i) surface temperature ranging between Tdlkirand Tskin+15 K in steps of
5K; (ii) channedmissivities of both TIR channels covering the range 0.968.995 in steps of 0.0175 and

- -0.030< < +0.018in steps of 0.006; and (iii) VZA ranging from nadir%m&beps of 5. It is worth
noting that the whole simulations cover a rangelekin between 230 K and 341 K, and a randéskin
minus T2m] from20 to +33 KThese are the optimum settings for representativeness when using the
SeeBor database.

After Cycle 1, all GEO products will be reprocessed with a GSW calibrated whinittenark dataset
constructed for the Round Rohiim order to provided harmonized data for the Merged Prodéatatural
consequence of this is that ainglesensor GEO ECV Products will also be consistent with LEO ECV
Productswith respect to coefficiet generation

Cloud screening is a fundamental step for Thermal Infrared (TIR) LST retriev@TEorproducts the
cloud mask is given, opplied to, Level 2 and Level 3 LST products.

Traditionally, threshold based techniques have been used to detect cloud but these often fail under
difficult circumstances-for example, in the detection of thin cirrus or ldevel fog. Three cloud detectio
algorithms which are being considered for us& 8T cciCycle Xor TIR LST Products are presented here:

x  The UOL_3 algorithm (Sectidrb.1).
x Bayesian algorithnfSectior4.5.2
x the NWCSAF Cloud Mask Algorithm (Secti6r)

The UOL3 Algorithm is expected to be applied to single sensor products produced from sensors on Low
Earth Orbit (Low Earth Orbit) platforms. Either the Bayesian or the 8Bi&gorithm will be applied to the

CDR depending on which is most appropriate. NWNéGSAF ©ud Mask Algorithm will be applied to
single sensor products produced from sensors on Geostationary (GEO) platforms. Updates will be made
to this document as the algorithms are developed and the best algorithm for eS&@keci product is
identified.
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4.5.1.UOL_3 Algorithm

The UOL_3 algorithm is a seBayesian cloud masking approach using the probability of -slear
conditions which has been developed at University of LeicfR@4.9]. A pixellevel cloud mask is derived
using a combination of simuled bridhtness temperatures and observational climatology. The approach
is equally valid for both day and nigtitine retrievals as this method is independent of visible wavelength
information. Ithas been implemented in the ESA DUE GlobTemperature ppyggbusly for ATSR data
records [REL9] and is being implemented operationally for SLSTRS[RD

This cloud masking algorithmses atmospheric profile data tpredict clearsky conditions for the
coincident space and time of a given satellite sensorepfzion. Coincident cleasky brightness
temperatures are derived by bilinear interpolation between surrounding ECMWEF profile locations and a
temporal interpolation between the ®ourly analysis fields. ER#&terim data[RD67] will be used for
profiles n Cyclel of LSTcci moving to ERA data subsequentlyThe coincidence is modelled through
bilinear interpolation of surrounding profiles and temporal interpolation betwedroGrly analysis fields.

On a spatial plane these modelled profile data corregpto the tie-point grid of the respective
instrument and orbitgranules For example, when applied to AATSR orbit granules, which are orbit
subsets of pixels every 25 km across track and 32 km along track, are ustE®][RD

An observational climatology iacquired for each 5x5° grid cellchosen to ensure sufficient
representivenessfor each of theland coves and diurnal conditions (day/night) required by an offline
enhanced LST retrieval algorithm 88, RBE59]. In Cycle 1 this has been stratified tnet27land coves

of the ATSR Land Biome Classification (ALB2L9RDn future Cycles this will be repked by LC cci
classesThe mean and standard deviations for ckslty conditions are stored in a LUWSIing RTTOV (see
Section4.5.1), expected cleasky brightness temeratures / brightness temperature differences are
simulated for these profile dat&.o calculate the cleasky probability at each pixel location a probability
density function (PDF) assuming a normal distrdouis constructed from the simulated meandintness
temperatures for the corresponding granule and the standard deviation of the brightness temperature
from the observational climatology from the corresponding Sx&d cell for the given monthand cover

and diurnal state as shown Kigure4 [RD58]. A perpixel cloud mask is generated from comparing the
pixel brightness temperatures/brightness temperature differences with the pixel probaliénsity
functions Pixels are identified as cloudy if the combined probabilities are less than a set of confidence
thresholds. For daytime observations, the cloud flag is set if either the observed 12 um brightness
temperature or 11- 12 um brightnesseamperature differene fall outside of the 95% confidence levels of
the corresponding simulated PDHR#ie thresholds themselves are simply for converting the probabilities
into a binary mask. Users can choose&dther use the probabilitiesFor nighttime observations, the 12

um brightness temperature and the %:13.7 um differences are usedhe actual tests relate to the
optimum criteria in which clouds can be distinguish&wr granules where insufficient profile data are
available to simlate the expected brightness tempures, or where incompatibilities between the
atmospheric and surface states result in an RTTOV extacli is a rareccurrence then the individual

pixel cloud flags are instead derived from other cloud masking regitaspecifically operational flags
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Figure4: For each granule of an AATSR orbit (left), the expectegihZrightness temperature is simulated from
coincident profiles. The PDF of observedut brightness temperatures for eadand coverdiurnal condition,
given the space and time position, is also determined (taght in green). This PDF is moved so that the mean

equals the expected mean for the granule and the new PDF represents the expecteeskieaonditions
(bottom-right in green). Figure 1 from [RB8].

4.5.2.Bayesian Algorithm

The Bayesian cloud mask, which was developed at the University of R¢R@W1g], calculates the
probability of cleaisky P(cy°,x,) given the observation vectoy?) and priorknowledge of the background
state «o):

G0 « e Rof
WL « o [

C Cx

0 G he p

Where&ﬁng&genotqclgud and clear conditions respectively. The prior probabilities of clear and cloudy
conditions {0 w and0 of) aredefined using ECMWF Efferim total cloud cover [R32] in Cycle 1
ERAS will be used ycle 2

0 « s is the probability of the observations given the background state. For-skgaobservations

this iscalculated using the RTTOV version 11 fast forward modelaionsin Cycle Isee Sectiod.5.2

moving to RTTOV 12in Cycle 2, with cloud properties specified using an empirical PDF as these are
computationally expensive to calculate. This cloud detection algorfiambeen successfully apglito

the Sea Surface Temperature (SST) CDR for ATSR instrume3s §R@D REB4] and for the AVHRR data

record in Phase 2 of the SST CCI project. Previous work has applied these techniques to GOES instruments
[RD35; and REB6] demonstrating its applability to geostationary sensors. The mask is also used
operationally for SST products from SLSTR SST anbh C3$ccithis cloud mask is being investigated
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for adaptation to terrestrial surfaceSuchinvestigation includesptimiseduse of VNIR/SWIR information
and appropriateness & prioridata. Full details will be presented in the next version

4.5.3.NWCSAF Cloud Mask Algorithm

The cloud mask to be applied to all GEO single sensor products is the Satellite ApplicationoRacility
Suppot to Nowcasting & Very Short Range Forecasting (NWC SAF) cloud mask algorithm (also known as
CMA). This cloud mask has been designed to be applicable to imagers on board meteorological
geostationary satellites [RRO]. It aims to support nowcasinapplicéions as well as remote sensing of
continental and oceanic surfaces, including identification of cloud free areas for LST products. This cloud
mask algorithm also provides information on the presence of snow/sea ice, dust clouds and volcanic
plumes [RB20].

This algorithm is based on a series of satellite dependent threshold test2(RDhe first step in the
process aims to identify most pixels containing cloud and snow using a series of multispectral threshold
tests based on factors such aswirg geonetry, surface temperature and atmospheric water content
(from Numerical Weather prediction fields), elevation, and climatological data. A second, optional step
uses a smaller series of multispectral tests on thresholds conddten RTTOV applieah-line to NWP
vertical profiles. This allows a more accurate threshold computation a detection of low or thin high clouds
that remained undetected in the first set of tests. Then an analysis of the temporal variation in a short
time period (around 15 mirtes) of acombination of channels allows the detection of rapidly moving
clouds. Fourthly, a specific treatment combining temporal coherency analysis and region growing
technique allows the improvement of low clouds detection in twilight conditions. Tisetleen another
optional step which involves an analysis of solar channels at high spatial resolution to detgitedub
clouds inside pixels at default horizontal resolution. Finally, a spatial filtering is applied to cold areas, cloud
edges (over oceanisolatal cloud pixel (land) and snearea edge. For the additional information on dust
clouds and ash clouds there are further processes to identify these features, which are applied to all pixels
and stored in separate flags.

The following section gives a description of the auxiliary datasets used for cloud detectidimeamehl
infrared retrieval algorithms utilised ibhSTcci This section also described how these auxiliary datasets
are applied in eachlgorithm.

4.6.1.Land cover

It should be noted that for initial LST products provided. By _cdn Cycle lland covelinformation will
be provided by the ATSR Land Biome Classification (ALB29]JR&ppendix A provides a table defining
the ALBZ.andcoverQassification.

Land coveinformation forLST cciproducts will be provided by the ESA CCI Land Cover maps developed

by the Land Cover CCI. These land maps are produced mainly from the MERIS FR time series, but also the
MERIS RR dataset iSPOT Vegetatio(SPOWVGT) [REI1]. Land cover maps are derived using a
classification model based on the GlobCover unsupervised classification chain. The processing chain was
developed with the aim of being globally consistent, but also regionally tulmedrder to dothis, the
GlobCover processing chain was improved by including machine learning classification steps and
developing a multyear strategy [Ri21]. CCIl land Cover information will lnsed in the UOL retrieval
algorithm, in combination witlother variablesto determine the most appropriate coefficients to apply.
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It will also be used in the UOL_3 and Bayesian cloud masking algoribpendix A provides a table
defining the CCI Land Coser

4.6.2.Fractional Vegetation

Fractional vegetation cover informan for LST cciis provided by the Copernicus Global Land Cover
Services FCOVER dataset Vi2tpg://land.copernicus.eu/global/products/fcovéer This global dataset is
available at 1/112° resolutioavery 10 days from 1999 onwards is acquired using a moving temporal
window of around 30 dayfRD21, RD19]. FCOVER is generated from normalizadinreflectances in
the red, neasinfrared, and shortwave infrared wavebands of SRG@iHd SPO% vegeation sensors using

a neural network trained with the-D radiative transfer models SAIL and PROSPE&PR[RIata values
range from 0.0 (no vegetatinor snow/water surface types) to 1.0 (full vegetatioWplidation of this
product shows that it is gooduality with a spatially consistent global distribution of retrief&@®23].

For use inLSTcci processing, an FCOVER value will be assigneddo sensor pixel via a nearest
neighbour approacH-or any pixel where no FCOVER values exist in a gigay@indow (either through
missing or poor quality data) the pixel is filled from a climatologyIBDThe climatology is constructed
from acompkte temporal window of the same t8ay period acrosall years where the FCOVER dataset
is available

Fractonal vegetation is used in the UOL retrieval algorithm, in combination with other varitblesight
the appropriate retrieval coeffients applied in the algorithmFor the SEVIRI product, fractional
vegetation will be used as follows.

Within the LSASAF, the fractional vegetation cover is used to derive TIR emisgtg6] (see Section

4.6.3. FCOVER is important to weight the emissivities between bare soil and fully vegetated states. The
same fundamental approach is etaped for both the SEVIRI singlensor product and the UQlgorithm

in Cycle 1. For future cycles we will investigate whether a consistent FCOVER dataset is needed to
maximise consistency or if an appropriate external emissivity dataset is more suitable

4.6.3.Emissivity

CAMEL

The Combined ASTER and MODIS Emissivitgaftd (CAMEL) database is a global monthly mean
emissivity dataset spanning the years 2@0B016.A climatology of CAMEL data will be used after 2016

if regular updates of this dataset are notailable.It assimilates both ASTER Global Emissivity Dsg¢aba
retrieved values and University of Wisconbiadison MODIS Infreed Emissivity dataset values. The
CAMEL dataset contains 12 emissivity values at different wavelengths from 3.6 to 14t 3 reaaution

of 0.5° [RER4]. Due to the dataset originatinfjom satellite observations, it is highly relevant to realistic
materials observed from space and should remove materials in spectral libraries, which are too fine a
scale to be useful. The benchnk dataset and the retrievals testing in this study useeiengths: 10.8,
11.3and 12.1 pm.

CAMEL emissivity data will be used in the SW approximatgurithms (Sectiond.2.1), explicity in the
case ofthe GIV algorithm (Sectiort.2.3 to calculate LST. Emissivity from CAMEtmiployed ina
Calibration Database for determining retrieval coefficidiotsall SW approximation algorithms

For initialLST cciproducts inCycle 1, the CIMMS Baseline Fit Emissivity Databas@JRill be used.


https://land.copernicus.eu/global/products/fcover
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In the future it is expected that emissivity for the applications detailed in this section will be provided
from the work being done as part ST cciWork Package 2.T.emperatue and Emissivity Separation
from MODIS multispectral TIR data (CCN to Baseline Project).

CIMMS

For initialLST_cabroducts in Cycle 1, the CIMMS Baseline Fit Emissivity Databa$®[RD be used.
CIMMS is a monthly dataset 0.05° with emissivitieailable at ten wavelengths between 316 and
14.3m,-Ay Of dzZRAYy 3 SYAadaAiAg@Aade G waddsingihe MGDFS operatibnab Y @
land surface emissivity product and by applying a baseline fit method to fill in the spectral gaps between
the six infrared emissivity wavelengthpided. The dataset is available as monthly filled files from 2003

to 2016 n netCDF format. A monthly climatology has been derived for use outside of the available data
window. The data is spatially and temporally interpolated onto a 1 km grid for tlee giay of the satellite
acquisition for use ibST_caiycle 1.

VCM

The Vegttion Cover methodVCM)uses pixel fraction of vegetation cover to derive Land Surface
Emissivity (LSE) [RD]. In the VCM, LST is considered to be a combination of the eityissom
vegetation and bare ground across the land surface. The methoddbt i summarised below and can
be found in detail in [R229] and [REB1].

The vegetation and bare ground emissivities per channel are estimated for land classes within the
International GeosphereBiosphere Program (IGBP) database-8RD For each IGBP sk the typical
vegetation and bare ground components of that class are identified. Then laboratory spectral reflectances
are used for the difference surface types within thatssldtaking into account sensor channel response
functions). Then appropriateidirectional reflectance distribution function mod¢RD75] are applied to

the channel emissivities to generate the LSE for the structured land surfaces. VCM assumes that the
surface is Lambertian and ignores the influence of shadow and deadaltterirg processes [RP9]. It is
possible to transform this to other land classifications and this will be looked at in future cycles to ensure
consistencyFor vegetated land coversimissivity is considered to be the result of the contribution from
vegetationand bareground proportions, following théCM([RD29] and [RD31]).:

- - OGE- p 0w

here FVC is the pixel fractional vegetation cover, and and- are the vegetation and bareground
emissivities,respectively, per channel. Both and- are estimated for land cover classes from
spectral libraries.

VCM will be used in theinglesensorLSTretrievalfrom SEVIRAs this is expected to be optimum for this
product

4.6.4. Atmospheric Variables

Atmospheric variables (for example Total Column Water Vapour (TCWYV), precipitable water and
atmospheric temperature) which is used as an input to TIR retrieval algorithms, isgaavidSTcciby

the ECMWEF Ranalysis 5ERA5) [RI27]. ERAS isre-analysis dataset which provides hourly estimates

of a significant number of land and atmospheric variables over the full glblespatial resolution of
30km grid It is the successdo the widely used ERMterim Reanalysis datasgRD67]. ERAS currently



Algorithm Theoretical Basis | Ref.:  LSICCID2.2ATBD
b N !cand sur{ace Document Version: 1.1
2 -" o peratiire Date: 19-Sep2019
WP2 ¢ DEE2.2 Page: 30

has a temporal coverage similar to other reanalyses (from 1979 to present), but more years are due to be
added to extend this dataset back to 1950.

Precipitable water is used in theQll retrieval algorithm, along with coefficients selected uking cover

and fractional vegetation information, to derive LST. Water vapour information and atmospheric
temperature are inputs required to determine retrieval coefficients for the GSW dhgoridtmospheric
profile data from ERASwhich is resolved with37 atmosghericlevels from the surface up to a height of
80km, is used in the UOL_3 cloud masking algorithm to derive clear sky probability information.
Furthermore, ERAS is employtaicreak a Clbration Database for determining retrieval coefficients.

It should be noted that ERIterim will be used instead of EFRRAN Cycle 1 dfSTcci ERANterim is the
predecessor of ER& It also provides hourly estimates of a significant numbeammd and atmospheric
variables over the full globe from 1979 to presenth a spatial resolution of 80 km with 60 atmospheric
levels from the surface up to 0.1 hHERANnterim was based on a 2006 release of the IFS (Cy31r2) and is
due to be replaced byHAS in 2019. The use of ER#Aerim will be superseded by ERAS for all subsequent
cycles.

4.6.5. Snow masking

Snow masking information will initially be provided by the Interactive Multisensor Snow and Ice Mapping
System (IMS) Daily Northern Hemisphere snowieddnalysis.

The IMS snow maps are daily maps of Northern Hemisphere land, sea, snow and ice on an equal area

polar stereographic grid at 1 km, 4 km and 24 km resolution, depending on time period. The IMS product

is manually created by an analyst usingtINB @A 2 dza RIF&@Q&a La{ YI L} al GaStf

mapping algorithms and other ancillary data [RE]. It is available from 1997 to present with higher
resolution maps available for shorter time periods. For inclusiduSificcialgorithms andoroducts, Daily

IMS maps of snow and ice presence in the northern hemisphere at a resolution of 0.01° are produced by
nearest neighbour interpolation of 4km IMS data {R®). Prior to 2004, when 4km IMS data became
available, a climatology is usefor theSouthern Hemisphere we use a channel ratio method based on
[RD74].

Snow masking is part of tHand coverinformation used in the UOL retrieval algorithm to determine the
most appropriate coefficients to applit.is also utilised in the UOL_3 cloowasking algorithm.Further
updates toLSTcciproducts will include a move to using ESA Snow Cover CCI products for snow masking
once they become available.

Following the agreed approach beingdertaken in otler projects such as ESA DUE GlobTemperature
[RD15] and H2020 EUSTACE-[RD whereby SST, LST and IST all conform to a standardised uncertainty
model. For LST this has been implemented this for AATSR, MODIS and SEVIRI data, whedmameshe

of interest here.

Generally, for each pixel, three components of uncertainty are provided, representing the uncertainty
from effects whose errors have distinct correlation properties:

x random (no correlation of error component between cells);
x locdly systematic @ NNBf  GA2y 2F SNNBN O2YLRYySyild o06SaGaeSS

y
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Locally correlated errors are modelled via spa@mporal correlation length scales that determihew
an observatn influences the analysis in the vicinity of its tisy@ace location. Systematic errors will be

accounted for by allowing a bias to be determined within the analysis procedure between different
sources of data, whose magnitude is conditid by the uncedinty attributed to systematic effects.

This approach is both a necessary minimum, since locally systematic effects are significant, and preclude
use of a simple random/systematic model and an approximation, in that there are severakdffat

have a gstematic aspect, and all of these are required to be partitioned into either the locally systematic

or systematic component. This is though, a significant advance on what has generally been done for LST
datasets to date. Moreover, this the-component moel applies to all satellite processing levels (L1, L2,

L3, and L4)rull details are presented the Endto-End ECV Uncertainty Budg&D69]. Here we only
presentwhat is specifically included in the output products.

4.7.1.Random

The randomcomponent of Lthannel uncertainty can be denoted as-(y:). The effect of this combined
across all channels needs to be propagated thrahgtretrievalto give a contribution to the estimate of
uncertainty from random effectaran(X) in the retrievedsurface temperatre. The assumption is that the
radiance noise is sufficiently Gaussian and small that the law of propagation of uncertainty is adequate
for this propagation, which means:

. Ty,
O R W ﬁ)o w

Emissivity is an auxiliary input to all estimates of thermodynamic temperature from BTs, whether explicit
or implicit. For LST, there is a potentially significant random error coemiccaused by the pixab-pixel
variations in emissivity not captured @missivity auxiliary information because it is related to variability

on the ground that is not captured in emissivity atlases/models. The associated uncertainty can be
estimated as

Where, some estimate of the uncertainty in emissivity per channel is required. In pratttiseis
estimated asthe magnitude of pixeto-pixel scale emissivity variability withameas that, based osame
land cover clags beingreated as having common emissivityEmissivity errors are estimated per land
class based on both existing literature and validation studial.details are included [RD69].

The total random comgnent is the acquired by adding the individual components in quadeatu
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4.7.2.Locally systematic

Atmospheric fields are correlated on timescales >1 day and length scales >100 km, and it is assumed that
errors in estimates of these fields from NWP are coredabn the same scales. For coefficient based
retrieval methods the rieval ambiguity is a contributor of residuals in the fit. For radiatramsfer

based retrieval coefficients, simulatedtrieved and simulationnput surface temperatures can be
compaed. The standard deviation of this input and output difference isstimate of the magnitude of

this locally correlated form of uncertainty. The calculation of the uncertainty can be done on stratified
data to parameterise the variations in magnitudetlois form of uncertainty. For each range of satellite
viewing angleand water vapour (being the primary sources of variabjlity¢ uncertainty is estimated as:

6 0 HOD B

LST retrieval assumes an emissivity whidy be driven by auxiliary land classification information and/or
and observed vegfation indices. Across a particular land class area, there may be a mean difference
between the assumed and true mean emissivity. This is thus a locally correlated effibet ecales of
emissivity variability. The form of the propagation to L2 uncetyais estimated as:

This locally correlatedcomponent is based on pixels for the sataed coverhaving the same error
characteristics. This does not capture kel variability for any given pixeltwin aland cover which is
captured above in the random companig and for which high resolution emissivity data are used to
quantify the error propeties. The correlation length scale is dependent on the source of the uncertainty.
As a result, atmosphé@r and surface related uncertainties are considered aralipied separately and
propagated as either correlated or uncorrelated uncertainties as appatgpfor a given productThe
total locally correlated component is the acquired by adding the indiVidomponents in quadrature.

4.7.3.Systematic

This includes components such as the uncertainty in the radiative transfer model. It is assumed here that
known corrections have been applied by data producers, either at L1 or in the retrieval process to L2, and
that what remains is describable as an uncertainty in the bias of the satellite surface temperatures (i.e.
the skin temperature of the surface the satidlsees) relative to other data sources of temperature.
Knowledge of the satellite engineering specifioats and/or validation performance may allow a
reasoned estimate of the likely magnitude of residual biases.

Since the different components aredependent of each other they are combined in quadrature for a
total uncertainty per pixel in the product.
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5. Retrieval of Land Surface Temperature from Microwave
Sensors

In the LSTcciopen algorithm intercomparison rourAgbbin, the performance of different LST retrieval
algorithms for a set of specific thermal infrared and microwave satellite sensors was asserhkadify
the best algorithms for a future climate quality operatiosgistem. The algorithms chosen 08T cci
Cycle 1 MW products:

% the NNEAAlgorithm (MW)
% for the Special Sensor Microwave/lmager (SSM/I) LST

In the following section a description MW retrievals is presented, along with a description of the
retrieval algorithm chosen for use iSTcci

As in the TIR region of the electromagnetic spectrum, MW instruments on satellites designed for retrieval
2T (KS &deNdiakh@ers abalabdspectral windows with large aphesc transmission. Typical
measuring channels are placed around 6, 10, 18, 37, and 89 GHz. For the low frequencies the atmospheric
transmission is very high and the impact of the atmospheric atiéion in the accuracy of the LST
retrieval is small. This also valid for atmospheres with clouds, as the emission from liquid water acts as
a weak source when compared with the large emission from the land surface. This is a major difference
with respet to the TIR, where the presence of clouds prevents tistriment from seeing the radiation

from the surface. At the higher frequencies, especially at 89 GHz, cloud contribution can be significant.
The scatteringlepressions in the radiation emitted byelsurface can be important for clouds containing
large ice particles, affecting the accuracy of the LST retriEnassivityvaries more in the MW region

than in the TIR, showing spatial and temporal variability that needs to be accounted for in tegaktri

Given the limited impaamf clouds, the MW LST can complement the TIR estimatitmsever, retrieving

LST from microwaves is more challenging than in the TIR. First, at the large wavelengths of the MW region
the Rayleighleans law is valid and thenéted radiation from the suace is the direct product of the
emissivity and the surface temperature. Compared with the TIRrdhigts ina stronger dependence on

the emissivityof the MW signal. Furthermore, the MW emissivity varies more with surfaoperties

such as soil moiste, vegetation cover, or the presence of snow, compared with the TIR emissivity. In
addition, as the antenna aperture is function of the wavelengthe spatial resolution of the MW
observations degrades with decreasing frequies, whereas the atmosphiercontribution to the signal
tends to increase with frequencies. The spatial resolution of the current MW imagers is typically 10 to 20
km at the frequencies of interest, a factor 10 to X@arserthan the current TIR obsertians. Moreover,

MW observatbns are only available from polar satellites, contrarily to the TIR also observed from
geostationary orbits, thus limiting the time sampling of the MW observations. Lastly, the microwave
radiation can emanate from the subsurigmot only from the surfacskin: the lower the frequency, the
larger the wavelengths, and the larger the penetration into the subsurface.

5.1.1.Mathematical description

In the MW region, the intensity of the radiation is commonly expressed in terms of beghtn
temperature, i.e., the tenperature a black body would have to match the intensity emitted by a given
source. In this region, the RayleighS I y& | LILINREAYLI A2y 2F GKS tftly
emissivity defined as the ratio of the radianceagjrey body with respect tthe radiance of a black body
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at the same physical temperature, the brightness temperature becomes the direct product of the
emissivity and the physical temperature. Using that relationship, the brightness temperature observed
by the MW spacédorne radiomeer at frequencyt and polarizationr) assuming surface specular
reflection and norscattering atmosphere may be written:

Yo Y Tt T RYQ p fop Y
Y o+Y fstYQ t¥
0 Tk 0°YQ O

wheret is the total atmospheric transmittance along the sensor line of sighand”Y represent the
upwelling and downwellingtmospheric emission, respectivelyy; is the surface emissivityY'Qis the
effective emission temperature of the surfacand thed , 6 and O terms are abbreviations of the
corresponding terms. Depelence of these variabdeon sensor viewing angle is omitted since we observe
at a constant zenith angle close to 53 deg.

The effective emission temperature of the surface will be the parameter to be estimated as the MW LST.
If the termsd ,06 andd and the emisivity can be properly characterized, the LST can then be retrieved.

In some specific locations, especially in very dry and sandy areas, the effective emission temperature can
be significantly different from the LST, because of the penetnatif the micravave radiation into the
sub-surface. These pixels will be duly associated with larger error estimates.

5.1.2. Emissivity

As in the TIR, variations in surface properties change the surface emissivity and the emitted MW radiation.
The variations @ larger thanin the TIR. For instance, at 37 GHz and horizontal polarization, emissivity
values can get below 0.8 for some outcrops in arid regions, and even lower in regions where standing
water is in the footprint of the observation. Without signifitachanges in @wface conditions, the
emissivity is quite stable for a given location and month, with a reported variability < 0.02 fto-day
variations from satellite emissivity retrievals [RB]. There are noticeable emissivity variations for
different surface tpes, with higher (lower) emissivity for vegetated (arid) regions. Different to the TIR,
there can be significant variability also within a given surface type due to changes in surface conditions,
mainly related to variation in soil moistuiend vegetationcover. Especially challenging are the snow
covered surfaces, where melting processes and snow metamorphisms can result in large emissivity
variations, and regions where seasonal flooding can occur, due to the large changes in the eleatimmagn
permittivity associated to the presence of water.

Details of the auxiliary emissivity products used 8T cciare given in Sectiob.4.1

5.2.1.NNEAAlgorithm

From the formulation given in Secti@nl.1, we carexpress the LST as:
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In principle, one single channel could be used to derive the LST assuming that all the terms in the equation
can be properly characterized. But given the uncertainties associated te tabdsulations, retrieving LST
using simultaneously a larger number of frequency channels further constrains the inversion problem,
resulting in more accurate LST retrievals, as shown ih&ieciopen algorithm intercomparison round

robin. This issimiar to the TIR, wher¢he doublechannel algorithms are more suitable to take into
account the atmospheric absorption and emissivity effects.

Comparable to the TIR, the MW retrieval aldomit needs to deal with emissivity and atmospheric
variations. To dal with emissivity changes, pmlculated microwave monthly mean emissivity estimates
available from the Tool to Estimate Land Surface Emissivity in the Microwave (TELSEM, seg.&dction
are used as inputs tthe retrieval algorithm, together with the brightness temperatures. Concerning the
atmosphere, no temperature or water vapourfenmation is used as input, but the information is
introduced into the retrieval by also including the 22 GHz channel, whitdbse to a water vapour line
and therefore sensitive to changes in atmospheric conditions.

The function given by the previouswtionis approximated by a notinear regression between the LST
and the combination of the brightness temperatures and emigsivalues, with the coefficients of the
regression determined with a calibration database (see Section 6.8). THranregression is built by

a standard multiayer perceptron (MLP) as in [RB]. MLPs are a type of neural network commonly used

to reproduce transfer functions between observations and related geophysical parameters given their
proven capability to appramateany continuous function with an arbitrary precisiRD43].

A MLP of one input layer of 14 nodes (the inputs of functioneF, the brightness temperatures and
emissivities for the 7 MW channels), one hidden layer of 10 nodes, and one outpa{thed_ST), will be
used here. If the input vector of the MLP is cailadd the output of the MLR, the way the input signal
propagates through the MLP is given by:

6 QO Q ® MO QO QYO

where "Qis the activation functiongo the weighting matrixgo the bias, andQthe input at layer j, in
this aseo is for the output layer andh for the hidden layer. Hyperbolic tangent and linear activation
functions are used for the hidden and outpugurons, respectively.

The weight and biases can be considered as the regression coefficients of thieaaymodel provided

by the MLP. These are determined during a learning phase, called training, where the weights and biases
that minimize a cost fuction, determined by a set of inpututput examples, are found. Here the
examples are provided by the calibratidatabase described in Section 6.8, while the cost function can

be expressed as:

where Z is the number of samples in the calibration datab@&éis,the standard zhorm, andd « is the
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output vector of the MLPdIr the corresponding input vector. In other words, we minimize the mean sum
of squares of the difference between targetsdtiraining LSTs of the calibration database) and current
outputs of the MLP to the corresponding input vectors (the training bngb$ temperatures and
emissivities). The initial weights of the neural network are randomly initialized by the Nguigeow
algorithm [RE39], and the final weights are assigned by a Marqudeltenberg backropagation
algorithm [R[44]. To prevent ovefitting to the training data set, a crosalidation technique is used to
monitor the evolution of the training error functio

When training the MLP, if the initial weights are slightly changed, or a new set of examples from the
calibration database arselected, the minimization of the error function results in a new set of final
weights and corresponding transfer function.rhost cases the resulting transfer functions are very close,
and for wellconstrained inversion situations the variability in tbatput (here the retrieved LST) by
applying thedifferent transfer functionss small Likewise, a large variability is an indication of inversion
situations where the MLP has difficulties to solve the inverse problem. This is used in the retrieval
algorithm as a form of quality control for the inversions. In practice, 100 neural netwatkdifferent

initial conditions are trained, the estimated LST is the median of the 100 retrieved values, and the
variability of the 100 estimates is monitored to camucases where the inversion situation seems
problematic.

Permanently icecovered sufaces have a distinct range of LST values and surface emissivities. Tests have
shown that the LST accuracy improves if one regression is dedicated to invert observatioAatarctica

and Greenland, while a second one is devoted to the remaining conéhkamd [RBEL4]. Therefore, we

adopt the same strategy here, and two sets of 100 MLPs are trained separately.

The MW retrieval algorithm is applied to the brightness temgtures at the original locations of the
sensor swath acquisitions. Given the diffiet channel footprints, the retrieval combines information at
different spatial resolutions. As the 19.35 GHz channels have a resolution of ~60 km, information from up
to ~ 60 km affects the LST retrievals. However, retrieval tests show that the 37.(h@thels are the

ones having more weight in the retrievathd as such theffective spatial resolutiomay be considered

to be of the order of ~30 km, corresponding to ttesolution of those channels.

A clearsky calibration database was generated for tt&T cciopen algorithm intexcomparison roune
robin, in a similar way to the databasedribed in Section 6.8 for the TIR but simulating SSM/I
observationsnstead. This achieved the objective of evaluating algorithm perémce both in the TIR and
MW regions within a common inversion setup. However, for the il retrieval algorithm, a larger
database already exists, based on real SSM/I observationsfiorckbudy and clear atmospheres, and it

is preferred as it describes in a more comprehensive way the relationship between the LST and the SSM/I
and SSMIS obsetions.

The database used for the final retrieval algorithm is based on the inversions of &&f/ations
described in [RE38]. Atmospheric and surface parameters were retrieved for clear and cloudy conditions
with a relatively complex inversion setudo constrain the inversions large range of ancillary
observations were used, including cloadd surface parameters from the International Satellite Cloud
and Climatology Project (ISCCP)-f®D and atmospheric information from the National Centre fo
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Environmental Prediction (NCEP) meteorological analysis [RC]. This ancillary informationquirasl re
because the original inversions of [RB] were first developed to estimate the atmospheric parameters
over land, with caution being necessary givertttie atmospheric signal is rather small as compared to
the surface contribution.

The retrievalslso provided LST estimates under clear and cloudy conditions. They have been thoroughly
evaluated RD47, R48, RB49], and are the reference for the caliiian of the simplified retrieval
algorithm of theLSTcci MW product. As described in Sectiér2.1, the new retrieval algorithm only
targets LST and removes the need of ancillary information, making it moretrttars the original
inversion algorithm regarding the objective of providingearaless climate data record.

The final database includes the global LST estimates, together with the corresponding SSM/I observations
at the different frequencies, and monthllimatological emissivity sourced from TELSEM (see Section
5.4.10). Four years (2000, 2003, 2005, and 2007) are included to provide suffisidrand atmospheric
variability, with thepairs of LST and brightness temperatures qualdytrolled to assure that only pairs
where the difference between thebservations and the simulated brightness temperatures for the given
atmospheric and land ate is within an acceptable noisgypicallyof the order of half of the instrumental
noise The final database consists of ~4.5 milla@ses, which are divided into a validation database of 1
million cases, while the remaining 3.5 million are sampled to provide a training database of 1 nslien ca
equalized in LST and clear/cloudy occurrence. Both training and validation databafasharedivided

into subdatabases covering Antarctica and Greenland, and the remaining continental land, for the
separate retrievals described in Sectl2.1

The following section gives a description of the auxiliary datasets used for microwave retrieval algorithms
utilised inLSTcci This section also described how thesaibary datasets are appliad each algorithm.

5.4.1.Emissivity

TELSEM

TELSEM (a Tool to Estimate Land Surface Emissivities at Microwave frequenelésHBEB] provides

a global monthly mean emissivity dataset. It is currently integrated toRbdiative Tansfer for TOVS
(RTTOWforward model, but a general version that can be interfaced with other radiative transfer codes
is also available. The dataset is based on SSM/I observations at 0.25° resolution from the period 1993
2004, but observations from th€ropical Rainfall Measung Mission (TRMM) and Advanced Microwave
Sounder UnHA (AMSUA) for selected months in the same periage also used to provide interpolation
routines capable to generate the emissivity at different frequencies and angles emnssivity data are
produced here at frequencies of 19, 22, 37 and 85 Hz in both vertical and horizontal polarisations. These
channels are used in the radiative transfer calculations of the MW calibration database and in the
microwave LST retrievals. In thetrievals, they providea reasonable guess of the surface emissivity,
which helps to improve the accuracy of the LST estimates as demonstratedLi8 Tioeiopen algorithm
inter-comparison rouneobin.

The TELSEM dataset willdmedin the microwave IST retrieval algorittm NNEA
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For more information on this dataset sedittp://www.estellus.fr/index.php?staticl2/microwave
emissivity

An initial assessment of the MW algorithm uncertainty is presented here. The calibration database for the
MW algorithm is based on real SSM/I observadiances and the corresponding LST estimates from an
inversion of the previous observations, as desatin Section 8.2and it is also applicable to the SSMIS
instrument MW emissivities from climatology are also used as an input to the retrieval algorithm,
together with the observed radiances. Given the peculiarities of this database, applying theaimyert
model described in Sectigh7for the TIR algorithms to the MW LST estimates is not straightforward. An
initial assessment of uncertainty is presented hirethe MW product of the_ST cciCycle 1, whichwill

be further revised in the framework of the E2UB for the subsequent production cycles

5.5.1. Theoretical Uncertainty

Theoretical uncertainty is estimated by looking at the retrieval errors of the validation database. Retrieval
error is defined as the differeee of the déabase LST and the algorithm retrieved LST from the
corresponding brightness temperatures. Rmproximately40(70)% of the database, the retrieval error

is smaller than 1.0(2.0) K. To characterize this error and provide an estimate dafimgethe sandard
deviation of the retrieval error for different retrieval conditions is calculated. Over the whole validation
database, the standard deviation of the retrieval error is 2.2 K.

In principle, given that the MW LST estimates come fromedficeent bagd retrieval algorithm, this
uncertainty could be described as the retrieval ambiguity of the uncertainty model described in Section
4.7 for the TIR raievals. However, the peculiarities of the MWilibeation database imply that the
described uncertainty is also likely to incorporate other components, such as the random components
associated to L1 channel noise and emissivity variability. As the talibrdatabase use real
observations, the regregm coefficients of the MW algorithm are calibrated with L1 radiances already
containing instrumental noise. Therefore, the mapping to be approximated by thdimear regression

is already noisy regardindné radiances, and part of the retrieval ambiguitomesfrom this noise. A
similar reasoning can be made concerning the emissivity. The inversion uses climatological emissivity, not
an estimation of the true emissivity at the observation acquisition, which certainly affects how accurately
the mapping letween radiances and the LST can be approximated when calibrating the retrieval
algorithm. In that sense, we can also justify that the derived theoretical error also includes an uncertainty
component related to the emissivity variability. Also, it shoué pticed that the target LST of the
calibration database already comes from an inversion, i.e., it is not anfee®ST. In that sense, the
derived theoretical uncertainty has to be considered as a lower limit. Moreover, this uncertainty analysis
excludes ary systematic components, which can typically only be inferred by comparisons with other
sources of LST.


http://www.estellus.fr/index.php?static12/microwave-emissivity
http://www.estellus.fr/index.php?static12/microwave-emissivity
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Figure5: Retrieval uncertainty defined as the standard deviation of the difference of the database LST
and thealgorithm retrieved LST. The standard deviation is calculated overliST estimates binned for
different ranges of LST, 37 GHz vertically polarized emissivity, cloud liquid water, and vegetation class
(rain forest (RFO), evergreen forest (EFO), decidus forest (DFO), evergreen woodlands (EWO),
deciduous woodlands (DWQggriculture (AGR), grasslands (GRA), tundra (TUN), shrublands (SHR), and
deserts (DES))he standard deviation @axis) is plotted for the AM (PM) overpasses as blue (red)
arrows. Thenormalized distribution of the variable stratifying the retrievals{xis) is also plotted as a
solid line (numbered axis not displayed).

Figure5 presents the retrieval uncertainty for fferent ranges of LST, emissivity, cloud liquid water
content, and vegetation class. The retrieval uncertainty is larger for the warmer and colder LSTs. Larger
values are also found for the lowest emissivity values associated to some of the challergis@irs,
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with the difficulties typically caused by wimg emissivity conditions not well captured by the
climatological values (e.g., snemwvered areas or humid surfaces). Variations of the uncertainty with
cloudiness are very small, showing the vamali impact of cloud presence in the retrievals. Regayd
vegetation conditions, the smallest averaged standard deviation happens for the rainforest. This is
reflecting the impact of emissivity in the retrievals, with rainforest representing quite stsintace
conditions and the emissivity climatology lik&onstraininghe inversion problem well.

5.5.2.Retrieval variability

The retrieval variability is defined as the standard deviation of the LST estimates fron®QhklL1IP
retrievals at each swath position (see Secton 1). Figures presents the average variability for the same
ranges and variables askigure5. When plotted as function of the LST and 37 GHz vertically polarized
emissivity, a larger variability is observed for the loweF BBd emissivity, coinciding with the largest
retrieval uncertainty previouslghown in Figure 5Cold LSTs are in many casesociated with snow
covered areas, where the climatological emissivity applied in the retrievgb@arly representhe true
conditions. Low emissivity values are associated with some of the places where difficult inversions are
expected, such as snewovered areas, humid surfaces, or coastal regions. But the larger retrieval
variability for the low emissivity valuesin also beelated to the smaller population representing those
conditions in the database, as shown by the distribution of the emissivity values also displ&jygarén

6. As described in SectiérR.], the calibration of the retrieval algorithm minimizes a global cost function,
and the minimization isikely to be more driven by the most represented conditions in the calibration
database. Regarding the cloud liquid water conterg, ¥ariability is close for clear and cloudy conditions,
showing the negligible impact of cloydesence for most inversis. An exception is strong convection
activity in the overlying atmosphere, where nguoantified scattering induced brightness temperedt
depressions can contaminate the retrievals as the inversion assumes that most of the microwave emission
comes from he surface. Concerning the variability for different vegetation types, they are comparable
apart from the tundra, possibly reflectingpe inversion difficulties for large parts of the year related to

the snow/inundation conditions.
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Figure6: Rerieval variability defined as the standard deviation of the LST estimates from the 100 MLP
inversions The retrieval ariability is calculated for LST estimates binned for the same conditions shown
in Figure 5 See the text for moreetails.
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