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1. Executive Summary 

The European Space Agency Climate Change Initiative on Land Surface Temperature (hereafter LST_cci) 
aims to provide Land Surface Temperature (LST) LST Essential Climate Variable (ECV) products and validate 
these data to provide an accurate view of temperatures across land surfaces globally over the past 20 to 
25 years.  

This Algorithm Theoretical Basis Document (ATBD) provides a detailed definition of the Land Surface 
Temperature (LST) valid observation identification and retrieval methodologies to be used for LST data 
products provided by LST_cci. The algorithms described in this document have been identified as the best 
algorithms for a future climate quality operational system during an open algorithm intercomparison 
round-robin. This document describes retrieval algorithms selected for use in deriving LST from Thermal 
Infrared and Microwave sensors. These are the University of Leicester (UOL) algorithm  and Generalised 
Split Window (GSW) algorithm for thermal infrared data, and the Neural-Network-Emissivity-All-channels 
(NNEA) algorithm for microwave data. 

Information is also provided in this document for any cloud clearing methods used; auxiliary datasets; 
uncertainty models and propagation of uncertainties; and calibration datasets. The methods outlined in 
this document will be implemented in an end-to-end system to generate the first LST_cci climate data 
records. 
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2. Introduction 

The European Space Agency Climate Change Initiative on Land Surface Temperature (hereafter LST_cci) 
aims to provide Land Surface Temperature (LST) LST Essential Climate Variable (ECV) products and validate 
these data to provide an accurate view of temperatures across land surfaces globally over the past 20 to 
25 years.  

This Algorithm Theoretical Basis Document (ATBD) provides a detailed definition of the Land Surface 
Temperature (LST) clear sky detection and retrieval methodologies to be used for LST data products 
provided by LST_cci. The algorithms described in this document have been identified as the best 
algorithms for a future climate quality operational system. The retrieval algorithms were selected during 
an open algorithm intercomparison round-robin which assessed the performance of a number of different 
LST retrieval algorithms for a set of specific thermal infrared and microwave satellite sensors [RD-68].  

The methods outlined in this document will be implemented in an end-to-end system to generate the first 
LST_cci climate data records. A flow chart summarising the algorithm processing is provided in Figure 1 
for thermal infrared sensors and in Figure 2 for microwave sensors. 

 

 

Figure 1: Data flows for LST_cci ECV single-sensor product prototype production system for thermal infrared 

sensors. For merged products the algorithms are applied to harmonised L1 data processed through to L3U and 

then merged to form L3S Products 
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Figure 2: Data flows for the SSM/I and SSMIS LST ECV prototype production system. 

It is expected that ongoing algorithm assessment will be carried out for each subsequent reprocessing to 
ensure the best performing algorithm is always implemented. This will aim to produce the most accurate 
LST retrieval for each LST_cci product. Therefore, this document will be updated as necessary. 

Note, for merging TIR and MW an experimental approach will be taken not necessarily utilising the existing 
algorithms. 

2.1. Purpose and Scope 

This document presents the algorithm theoretical basis of retrieval methodologies to be used for LST data 
products provided by LST_cci.  

2.2. Reference Documents 

The following is a list of documents with a direct bearing on the content of this report. Where referenced 
in the text, these are identified as RD-xx, where 'xx' is the number in the table below. 
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2.3. Glossary 

The following terms have been used in this report with the meanings shown. 

 

ATSR Along-Track Scanning Radiometer 

ATSR-2 Along-Track Scanning Radiometer-2 

AATSR Advanced Along-Track Scanning Radiometer 

ALB2 ATSR Land Biome Classification 

ATBD Algorithm Theoretical Basis Document 

BT Brightness Temperature 

C3S Copernicus Climate Change Service 

CAMEL Combined ASTER and MODIS Emissivity for Land 

CCI Climate Change Initiative 

CDR Climate Data Record 

ECMWF European Centre for Medium-Range Weather Forecasts 

ECV Essential Climate Variable 

Envisat Environmental Satellite 

ERA5 ECMWF Re-analysis 5 
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ERS European Remote-Sensing Satellite 

ESA European Space Agency 

GEO Geostationary Orbit 

GSW Generalised Split Window 

IGBP International GeosphereςBiosphere 

ISRF Instrument Spectral Response Function 

LEO Low Earth Orbit 

LSE Land Surface Emissivity 

LST Land Surface Temperature 

LST_cci ESA CCI on LST 

MODIS Moderate Resolution Imaging Spectroradiometer 

MW Microwave 

NN Neural-Network 

NWC SAF Satellite Application Facility on Support to Nowcasting & Very Short Range 
Forecasting 

RTM Radiative Transfer Model 

RTTOV Radiative Transfer for TOVS 

SEVIRI Spinning Enhanced Visible and InfraRed Imager 

SLSTR Sea and Land Surface Temperature Radiometer 

SSM/I Special Sensor Microwave/Imager 

SSMIS Special Sensor Microwave Imager Sounder 

SST Sea Surface Temperature 

SW Split Window 

TCWV Total Column Water Vapour 

TIR Thermal Infrared 

UOL University of Leicester 

VCM Vegetation Cover Method 
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3. Sensor Descriptions 

The algorithms described in this ATBD will be used to derive the following LST_cci products from: 

× ATSR-2 and AATSR 

× SLSTR  

× MODIS  

× SEVIRI  

× SSM/I and SSMIS 

Descriptions and summary information for the satellite sensors noted above are provided in the following 
sections. 

3.1. ATSR-2 and AATSR 

The Along Track Scanning Radiometer (ATSR) series of instruments include ATSR-2 and AATSR (Advanced 
Along-Track Scanning Radiometer). These were launched on board European Space Agency (ESA) sun 
synchronous, polar orbiting satellites ERS-2 in April 1995, and Envisat (Environmental Satellite) in March 
2002, respectively. The last of these instruments ς AATSR ς provided its final data on 8th April 2012. These 
ATSRs therefore provide approximately 17 years of data. Continuation of this sensor series occurred, 
albeit with a data gap, with the launch of the Sea and Land Surface Temperature Radiometer (SLSTR) 
sensors on board Sentinel-3 satellites (see Section 3.2).  

All ATSR instruments used similar orbits and equator crossing times ensuring a high level of consistency. 
With a swath width of 512km, AATSR is able to provide approximately 3-day global LST coverage with a 
repeat cycle of 35 days. The overpass of AATSR is 10:00 (local solar time) in its descending node and 22:00 
(local solar time) in its ascending node. For ATSR-2 the overpass times are 10:30 and 22:30 in the 
descending and ascending nodes respectively. The orbit of the ATSRs was very stable in local crossing 
times and no notable orbital drifts occurred. 

AATSR has good radiometric accuracy of less than 0.1 K in the mid-range of surface temperatures for both  
11 and мн ˃Ƴ ōǊƛƎƘǘƴŜǎǎ ǘŜƳǇŜǊŀǘǳǊŜǎ (once a correction of order 0.2 K is applied to 12 ˃ Ƴ brightness 
temperatures [RD-19]), based on two blackbodies scanned on each scan cycle for calibration and using 
Stirling Cycle coolers to maintain the infrared detectors at low noise. All three ATSRs have similar 
specifications with near-ƛƴŦǊŀǊŜŘ όbLwύ κ ƛƴŦǊŀǊŜŘ όLwύ ŎƘŀƴƴŜƭǎ ŀǘ мΦсΣ оΦтΣ мм ŀƴŘ мн ˃ƳΦ Both ATSR-2 and 
!!¢{w ƘŀǾŜ ǘƘǊŜŜ ŀŘŘƛǘƛƻƴŀƭ ǾƛǎƛōƭŜ ŎƘŀƴƴŜƭǎ ŀǘ лΦррΣ лΦсс ŀƴŘ лΦут ˃Ƴ ŦƻǊ ŜȄǘŜƴŘƛƴƎ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴ ƻŦ 
ATSR data into the land domain. A distinguishing feature of the ATSRs was the dual-angle (DA) capability 
(nadir and forward at an angle of ~55° to nadir). However, only the nadir view is generally utilised in LST 
retrievals, LST_cci included. The rationale on the use of the nadir view only is provided in [RD-54] which 
assessed both SW and DA over topographically flat and homogeneous rice fields and found DA algorithms 
to be less accurate. Further information on the algorithm to be used for ATSR-2 and AATSR LST retrievals 
in LST_cci is given in Section 4. 

3.2. SLSTR 

The Sea and Land Surface Temperature Radiometer (SLSTR) ςwhich is based on the principles of AATSR ς
on board the Sentinel satellites 3-A and 3-B comprises a space element of Copernicus programme. This 
responds to the requirements for an operational and near-real-time monitoring of the Earth surface over 
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a period of 15 to 20 years. Sentinel-3A was launched ion 16th February 2016, and Sentinel-3B was launched 
on 25th April 2017. 

SLSTR  is  designed  to  retrieve  global  sea-surface  temperatures  to  an accuracy of better than 0.3 K and 
global land surface temperature to an accuracy of less than 1 K. Like AATSR a dual view capability is  
maintained with SLSTR - the nadir swath being 1420 km, and the backward view having a swath width of 
750 km. This supports a maximum revisit time of 4 days in dual view and 1 day in single  view. There are  
nine spectral channels including two additional bands optimised for fire monitoring and improved cloud  
detection.  The spatial resolution of SLSTR is 500 m in the visible and shortwave infrared channels and 1 
km in the thermal infrared channels. The baseline retrieval for the operational ESA SLSTR LST product 
consists  of  a nadir-only split-window algorithm  with  classes  of  coefficients  for  each  land cover-diurnal  
(day/night)  combination. 

3.3. MODIS 

MODIS (Moderate Resolution Imaging Spectroradiometer) instruments were launched on board two sun-
synchronous, near-polar orbiting satellites Terra (EOS AM-1) launched on 18 December 1999 and Aqua 
(EOS PM-1) launched on 4 May 2002, respectively. Each instrument provides a pair of observations each 
day acquiring data in 36 spectral bands. Terra-MODIS acquires data at approximately 10:30am (local solar 
time) in its descending node and at approximately 10:30pm (local solar time) in its ascending node; while 
Aqua-MODIS observes the Earth at approximately 1:30pm (local solar time) in its ascending node; and at 
approximately 1:30am (local solar time) in its descending node. The swath width of these instruments, 
2330km, enables these satellites to view almost the entire surface of the Earth every day. The spatial 
resolution of the thermal bands is 1 km; with both land surface temperature and land surface emissivity 
being core products from these instruments. 

3.4. SEVIRI 

The Spinning Enhanced Visible and Infrared Imager (SEVIRI) is the main sensor on board Meteosat Second 
Generation (MSG), a series of 4 geostationary satellites operated by EUMETSAT. SEVIRI was designed to 
observe an earth disk over Africa, most of Europe and part of South America with a temporal sampling of 
15 minutes. Satellite view angles for SEVIRI range from 0° to 80°. The first MSG satellite was launched in 
August 2002, and operational observations are available since January 2004. 

SEVIRI spectral characteristics and accuracy, with 12 channels covering the visible to the infrared [RD-55, 
RD-56] were unique among sensors on board geostationary platforms, for several years since the launch 
of MSG-1. The High Resolution Visible (Table 5) channel provides measurements with a 1 km sampling 
distance at the sub-satellite point (SSP); for the remaining channels the spatial resolution is reduced to 3 
km at SSP. Level 1.5 data are disseminated to users after being rectified to 0° longitude, which means the 
satellite viewing geometry varies slightly with the acquisition time (satellite zenith angles typically differ 
by less than 0.25° between consecutive observations). 
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Table 1: Characteristics of the SEVIRI instruments onboard Meteosat Second Generation. 

VIS0.6  0.635 533 Wm-2sr-м˂Ƴ-1  S/N 10 at 1% albedo 

VIS0.8  0.81 357 Wm-2sr-м˂Ƴ-1 S/N 7 at 1% albedo 

NIR1.6  1.64 75 Wm-2sr-м˂Ƴ-1 S/N 3 at 1% albedo 

IR3.9  3.92 335 K 0.35K at 300K 

WV6.2  6.25 300 K 0.75K at 250K 

WV7.3  7.35 300 K 0.75K at 250K 

IR8.7  8.70 300 K 0.28K at 300K 

IR9.7  9.66 310 K 1.50K at 255K 

IR10.8  10.80 335 K 0.25K at 300K 

IR12.0  12.00 335 K 0.37K at 300K 

IR13.4  13.40 300 K 1.80K at 270K 

HRV  Broadband (about 0.4 ς 
1.1) 

460 Wm-2sr-м˂Ƴ-1 S/N 1.2 at 0.3% 
albedo 

 

3.5. SSM/I and SSMIS 

The MW LST product will be built using radiances observed by the Special Sensor Microwave/Imagers 
(SSM/I since 1987) and its more recent version the Special Sensor Microwave Imagers Sounder (SSMIS 
since 2003).  This family of instruments flies on board Defense Meteorological Satellite Program (DMSP) 
near-polar orbiting satellites, and provides passive microwave observations twice a day at 19.35, 22.235, 
37.0, and 85.5(SSM/I)/91.665(SSMIS) GHz with an incident angle of 53 degrees resulting in ground 
resolutions for SSM/I (SSMIS) of 69x43 (73x41), 50x40 (73x41), 37x28 (41x31), and 15x13 (14x13) km, 
respectively. Vertically and horizontally polarized BTs are available at all frequencies, apart from the 
22.235 GHz channel, which is only vertically polarized. Instrument swath widths are close to 1400 (SSM/I) 
and 1700 (SSMIS) km, providing a 1-2 days revisiting time depending on acquisition latitude.  The source 
of brightness temperatures will be the Fundamental Climate Data Record of Microwave Imager Radiances 
[RD-50], where the brightness temperatures from the different SSM/I and SSMIS instruments have been 
inter-calibrated to reduce changes related to inter-sensor differences.    
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Figure 3: Local ascending equator crossing time for SSM/I and SSMIS (courtesy of Remote Sensing Systems, 

http://www.remss.com/support/crossing-times/). Only the FXX instruments are relevant here. 

At a given time, a number of these instruments can be flying with slightly different local overpassing times, 

with a local time of the ascending node around 18 hours. Figure 3 (courtesy of Remote Sensing Systems) 

shows the local ascending equator crossing time. The variations in overpassing time are related to the 

original orbit injection of the DMSP satellites, and the subsequent orbital drift, which is not corrected 

during the lifetime of the missions. This means that when deriving climate data records (CDRs) from these 

observations diurnal cycle aliasing will be present, and need to be taken into account when using the 

CDRs. 
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4. Retrieval of Land Surface Temperature from Thermal 
Infrared Sensors 

The retrieval algorithms used in LST_cci are either TIR or Microwave (MW) algorithms, which exploit 
different parts of the electromagnetic spectrum to derive LST.   

In the LST_cci open algorithm intercomparison round-robin, the performance of different LST retrieval 
algorithms for a set of specific thermal infrared and microwave satellite sensors was assessed to identify 
the best algorithms for a future climate quality operational system. The algorithms chosen for TIR were:  

× the University of Leicester (UOL) Algorithm (TIR) 

¾ for the Advanced Along-Track Scanning Radiometer (AATSR) LST ECV dataset 

¾ for the AATSR / Sea and Land Surface Temperature Radiometer (SLSTR) / Moderate Resolution 
Imaging Spectroradiometer (MODIS) CDR 

× the Generalised Split Window (GSW) Algorithm (TIR) 

¾ for the MODIS and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) LST ECV datasets 

¾ for the Merged Dataset (AATSR / MODIS / SEVIRI) 

In the following section a description of TIR retrievals is presented, along with a description of the retrieval 
algorithms chosen for use in LST_cci. The MW retrievals are described in Section 5. 

4.1. Physics of the Problem 

In the TIR region of the electromagnetic spectrum, absorption and emission effects, mainly due to the 
presence of water vapour, are responsible for attenuation of the surface signal observed by a satellite 
ǊŀŘƛƻƳŜǘŜǊΦ !ǎ ǎǳŎƘΣ ƛƴǎǘǊǳƳŜƴǘǎ ƻƴ ǎŀǘŜƭƭƛǘŜǎ ŘŜǎƛƎƴŜŘ ŦƻǊ ǊŜǘǊƛŜǾŀƭ ƻŦ ǘƘŜ ŜŀǊǘƘΩǎ ǎǳǊŦŀŎŜ ǘŜƳǇŜǊŀǘǳǊŜ 
use spectral windows where absorption and emission effects are minimised and the surface emission 
ǎƛƎƴŀƭ ƛǎ ƘƛƎƘŜǊΦ DŜƴŜǊŀƭƭȅ ǘƘŜ млΦр ǘƻ мнΦр ˃Ƴ ǿƛƴŘƻǿ όŎƻƳƳƻƴƭȅ ǊŜŦŜǊǊŜŘ ǘƻ ƛƴ ǘƘŜ ƭƛǘŜǊŀǘǳǊŜ ŀǎ ǘƘŜ ǎǇƭƛǘ-
ǿƛƴŘƻǿ ǊŜƎƛƻƴύ ƛǎ ǳǎŜŘ ŦƻǊ [{¢ ǊŜǘǊƛŜǾŀƭ ǇǳǊǇƻǎŜǎΣ ǊŀǘƘŜǊ ǘƘŀƴ ǘƘŜ оΦр ǘƻ пΦн ˃Ƴ ǿƛƴŘƻǿΣ ŀǎ ƛǘ ƛs not as 
subject to solar signal effects. Even in this region of high transmission, correcting for atmospheric 
attenuation is still a necessity for accurate LST retrievals. Accurate LST retrievals also require algorithms 
which correct for emissivity effects.  
 
Both of the TIR retrieval algorithms chosen for use in LST_cci are so-called split-window (SW) algorithms, 
which utilise the radiances reaching the sensor in two channels whose band centres are close in 
wavelength. This SW method provides an estimate of the surface temperature from two brightness 
temperature measurements and assumes that the linearity of the relationship results from linearisation 
of the Planck function (which is generally a good assumption), and linearity of the variation of atmospheric 
transmittance with column water vapour amount as the most important trace gas (sometimes a poor 
approximation). For retrieval of LST, where the emissivity over land can be low and where emissivity varies 
significantly with surface cover and type, compared to Sea Surface Temperature retrievals over open 
ocean, the surface and atmosphere must be treated as a coupled system. There are two approaches to 
solving the problem of LST determination using the SW channels. The first assumes that the effects due 
to the land and atmosphere can be decoupled and the method is then to separate out the surface effects 
(emissivity) from the atmospheric effects (water vapour). The second approach is to accept that the 
surface and atmosphere are coupled, solve the problem without taking explicit account of either 
emissivity or water vapour, but to allow for their effects simultaneously. The difficulty of the first approach 
is that an estimate of the emissivity must be provided or retrieved and validated. Robust methods to 
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retrieve both LST and emissivity simultaneously require multiple thermal channels so are not feasible for 
instruments with only two channels in the 8-14 micron range. There is also a lack of global high spatial όҖ 
1 km) ŀƴŘ ǘŜƳǇƻǊŀƭ όҖ ƳƻƴǘƘƭȅύ ǊŜǎƻƭǳǘƛƻƴ emissivity datasets covering the entire range required for 
multi-decadal data records. These restrictions make the first approach very challenging and the 
recommendation is to follow the second approach. 
 
The approach used in LST_cci is the second approach which is outlined mathematically in the following 
section. Having established that there is a linear relation between the surface leaving radiance and the 
two SW radiances for the land, the problem is reduced to one of multiple, linear regression. The retrieval 
coefficients, derived by regression, have physical meaning and physical constraints can be utilised to 
ensure their validity. The temperature that is retrieved using the algorithm is a radiative surface 
temperature; it is appropriate for use as the temperature corresponding to the radiative flux density from 
the surface (i.e. Stefan-Boltzmann law). When used in modelling studies care must be taken to ensure 
that the model output temperature corresponds to the LST product definition below. 
 
The definition of LST from TIR ƛǎ ǘƘŜ ŜŦŦŜŎǘƛǾŜ ǊŀŘƛƻƳŜǘǊƛŎ ǘŜƳǇŜǊŀǘǳǊŜ ƻŦ ǘƘŜ 9ŀǊǘƘΩǎ ǎǳǊŦŀŎŜ άǎƪƛƴέ ƛƴ ǘƘŜ 
ƛƴǎǘǊǳƳŜƴǘ ŦƛŜƭŘ ƻŦ ǾƛŜǿΦ ά{ƪƛƴέ ǘŜƳǇŜǊŀǘǳǊŜ ƘŜǊŜ ǊŜŦŜǊǎ ǘƻ ǘƘŜ temperature of the top surface in bare soil 
conditions and to the effective emitting temperature ƻŦ ǾŜƎŜǘŀǘƛƻƴ άŎŀƴƻǇƛŜǎέ ŀǎ ŘŜǘŜǊƳƛƴŜŘ ŦǊƻƳ ŀ ǾƛŜǿ 
of the top of a canopy. For mixed scenes skin temperature is the aggregated radiometric surface 
temperature of the ensemble of components within the sensor field of view. 
 

4.1.1. Mathematical description 

The mathematical development of the problem of determining LST from a satellite radiometer with SW 
channels follows closely that of [RD-1], [RD-2] and [RD-3, RD-4, RD-5]. These papers show that under 
certain assumptions (these are introduced at each step below), it is possible to formulate the surface 
leaving radiance in terms of a linear combination of radiances reaching the satellite sensor in two channels 
close in their respective central wavebands. 
 
The proposed LST products will provide pixel by pixel LSTs using only the nadir SW (11 and 12 µm) channels 
of the satellite instruments. The products will utilise the cloud-free top-of-the-atmosphere 11 and 12 µm 
brightness temperatures and ancillary information to correct for water vapour absorption and spectral 
emissivity effects. The product is generated using a regression relation and look-up tables that 
accommodate global and seasonal variations in the main perturbing influences. The mathematical basis 
for the formulation is provided here. 
 
The starting point for any LST algorithm is a consideration of the thermal radiative transfer equation for 
monochromatic radiation emitted and reflected from a surface that is assumed homogenous, and 
received by a spaceborne radiometer. The homogeneous area is defined by the angular field-of-view of 
the radiometer. The radiance received at the satellite-borne radiometer may be written, 
 

Ὅί  C † ǎLǎǳǊŦŀŎŜǎ LŀǘƳƻǎǎ Ř’ 
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ǎƪȅ 

Řʍȟ    
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Ὅ  ὄ Ὕᾀ
†

ᾀ
ᾀȟЊŘᾀ         

 
 
Where: 

× Ὅ is the radiance at the radiometer, 

× Ὅ  is the surface leaving radiance, 

× Ὅ  is the radiance from the atmosphere, 

× † is the atmospheric transmittance, 

× ’ is wavenumber, 

× ᾀ is height  

× C is the filter response function of the radiometer, 

× ǎ is a unit vector defining the view direction, 

× ǎ ƛǎ ŀ ǳƴƛǘ ǾŜŎǘƻǊ ŘŜŦƛƴƛƴƎ ǘƘŜ ǎǳƴΩǎ ŘƛǊŜŎǘƛƻƴΣ 

× Ὕ is the surface temperature, 

× Ὕ is the atmospheric temperature, 

×  is the surface emissivity, 

× ὄ is the Planck function, 

× ” is the surface reflectance, 

× Ὅ  is the downwelling sky radiance. 

 
If the surface is in thermodynamic equilibrium with the atmosphere, then according ǘƻ YƛǊŎƘƘƻŦŦΩǎ ƭŀǿΥ 
 

ƴϽǎ ǎŘʍ Ґ ƴϽǎ ρ
ρ

“
ƴϽǎ” ǎȟǎŘʍᴂ Řʍ 

 
We assume that the surface is Lambertian. This assumption is valid since the Lambertian approximation 
of the surface reflection does not introduce a significant error in thermal infrared region [RD-3, RD-70]. 
Then  and ” are independent of direction, 
 

 ρ ” 
The flux density of sky radiation is: 
 

Ὂ  Ὅ ÃÏÓ—ÓÉÎ—Ř—Ř‰
ϳ

 

 
Where — is the satellite zenith view angle, and ‰ is the satellite azimuth view angle. 
 

Ὅ   ὄ Ὕ ρ  ὒ  
 

ὒ  
Ὂ

“
                                          

 
This leads to the definition of surface temperature as sensed by a space-borne infrared radiometer: 
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Ὕ  ὄ
Ὅ ρ  ὒ


 

 
This definition has the attribute that Ὕ is directly measurable from space (e.g. from the AATSR), is valid 
at any scale, and for a homogeneous surface it is equivalent to the thermodynamic temperature. 
 
¢ƘŜ ŘŜŦƛƴƛǘƛƻƴ ƛǎ ƻƴƭȅ ǎǘǊƛŎǘƭȅ ǘǊǳŜ ŦƻǊ ƳƻƴƻŎƘǊƻƳŀǘƛŎ ǊŀŘƛŀǘƛƻƴΦ CƻǊ ǎǳŦŦƛŎƛŜƴǘƭȅ ƴŀǊǊƻǿ ŎƘŀƴƴŜƭǎ όҒ м ҡƳ 
width) with relatively smooth filter response functions, the variation of the Planck function with 

wavenumber is small. Thus an integration of the various quantities (Ὅ, , ὒ , etc.) over the filter 
function is appropriate. 
 
The definition is only strictly valid under the assumptions outlined above over typical surface temperature 
ranges. Under most circumstances we expect the assumptions to remain valid and violation are weak so 
that the definition (and hence derivation of the surface temperature) is approximately correct. 
 
Determination of the quantities in (9) can be done by various means. The approach we have taken follows 
[RD-4] and [RD-5], and shows that the surface temperature may be written as a regression relation 
involving the brightness temperatures in the 11 and 12 µm channels. The relation takes account of 
atmospheric absorption (water vapour) and spectral emissivity effects. 

4.1.2. Emissivity 

It is well-known that variations in surface properties cause variations in the emission of radiation from 
natural surfaces and this complicates LST retrieval. One major source of variation is due to the structural 
properties of the surface and this affects the efficiency of emission and reflection of thermal radiation 
from the surface. 
  
There are substantial variations in surface emissivity, which is unitless, over the globe. The lowest values 
occur in sandy regions where the emissivity may be as low as 0.92 at 11 µm [RD-6]. Over highly vegetated 
surfaces (e.g. closed-canopy trees) the emissivity is known to be spectrally uniform and high (  > 0.98, 
e.g. [RD-7]). Within a particular surface type the variation of emissivity is not well known, but 
ƳŜŀǎǳǊŜƳŜƴǘǎ ǎǳƎƎŜǎǘ ƛǘ ƛǎ ǎƳŀƭƭ Ғ ҕлΦлмΣ ŜȄŎŜǇǘ ǿƘŜƴ ǎǘǊǳŎǘǳǊŀƭ ŎƘŀƴƎŜǎ ƻŎŎǳǊ ŀǎ ƛƴ ǎŜƴŜǎŎŜƴǘ 
vegetation. Thus the greatest concern for deriving LSTs is the variation between surface types rather than 
the variation within surface types.  
 
The scheme for accounting for emissivity variations between surface types relies on a surrogate measure 
of the surface structure; in this case we have used fractional vegetation cover and vegetation type. [RD-
8] suggests using a classification based emissivity system for MODIS LST products. Their system uses 17 
LD.t ΨǎǘŀǘƛŎΩ ƭŀƴŘ ŎƻǾŜǊ ŎƭŀǎǎŜǎΦ This is applicable to Land Cover CCI (LC_cci) by way of transfer functions 
from one classification system to the other. Also of concern is the directional variation of emissivity. 
Generally, the variation is strongest with view angles greater than 50° or so. Little is known of the variation 
with azimuth angle, although over real surfaces emissivity angular effects are likely to be associated with 
induced changes in the actually observed scene. 
 
While it is important to note the role that emissivity plays in determining the emission and reflection of 
thermal radiation from the land surface, it must be stressed that few field measurements of emissivity at 
scales appropriate to (for example) the AATSR pixel size have been made, although increasingly becoming 
available. Thus while it is possible to retrieve an emissivity from thermal satellite measurements, its 
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validation is problematic. Moreover, none of the emissivity schemes proposed can claim accuracies better 
than ±0.02. It is likely that the retrieval errors and biases are re-mapped from atmospheric transmittance 
errors, since the radiative transfer problem shows that the surface emissivity and atmospheric 
transmittance always appear as a product. Separating their effects accurately suggests that the 
atmospheric transmittance must be known at least to the same accuracy.  
 
These factors should be borne in mind in considering the derivation of the LST algorithm itself in the 
following sections. Details of the auxiliary emissivity products used in LST_cci are given in Section 5.4.1.  

4.2. Algorithm Descriptions 

4.2.1. Split-Window (SW) Approximation 

By utilising the mean value theorem, it can be shown that as in [RD-2]: 
 

Ὅ
ρ

ρ †
 ὄ Ὕᾀ

†ᾀȟᾀᴂ

ᾀ
Řᾀ 

 
Where: 

× Ὕᾀ is the atmospheric temperature profile, 

× ᾀ is height, 

× †ᾀȟᾀᴂ is the transmittance profile between two heights. 

 
The transmittance may be written, 

†ᾀȟЊ ÅØÐ Ὧ ᾀύᾀ ÓÅÃ— Řᾀᴂ 

 
Where: 

× Ὧ is the absorption coefficient, 

× ύᾀ is the vertical profile of the absorber amount. 

 

This leads directly to the SW formulation. Consider two wavelengths (e.g. SLSTR 11 and 12 µm channels 
and introduce appropriate subscripts): 
 

Ὅ   ὄ Ὕ ρ  ὒ † ρ † Ὅ  
 

Ὅ   ὄ Ὕ ρ  ὒ † ρ † Ὅ  
 

Linearise around ’  and then manipulate: 
 

ὄ’ȟὝ  ὄ’ ȟὝ
ὄ

’
’ ’  

 

ὄ Ὕ  
ρ 

 † ɝ
Ὅ



 ρ † ɝ
Ὅᴂ  
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Where: 

×   ȟ 

× ɝ    ȟ 

×   Ȣ 

× Ὅᴂ  is the radiance at ’  ’  that yields a temperature equal to Ὕ . Thus, 

× Ὅᴂ  ὄ Ὕ Ȣ 

 

Below are some special cases which are worth considering: 
 

× No spectral emissivity dependence: 

 
ɝ π 

 

ὄ  
ρ 


Ὅ



‐
Ὅ  

 

× 9ƳƛǎǎƛǾƛǘȅ Ғ м όŜΦƎΦ ǎŜŀ ǎǳǊŦace): 

 
ὄ ρ Ὅ Ὅᴂ  

 
By linearising the Planck function about a mean atmospheric temperature, the algorithm can be 
formulated in terms of brightness temperatures. 
 

ὄ’ȟὝ  ὄ’ȟὝ
ὄ

Ὕ
Ὕ Ὕ 

 
After some manipulation, 
 

ὒὛὝὥ ὦὝ ὧὝ  
 

× ὥ   ȟ 

× ὦ  
ϳ
ȟ 

× ὧ  
ϳ
Ȣ 

 

This mathematical development shows that under the assumptions highlighted at each step in the process 
it is possible to relate the brightness temperatures in the 11 and 12 µm channels linearly to the land 
surface temperature. 

Although 11 and 12 are non-unity for land surface emissivities, from a radiative transfer point-of-view, 
they are sufficiently close to one for the approach to be appropriate. 
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4.2.2. UOL Algorithm 

The UOL algorithm will be used in LST_cci Cycle 1 for the ATSR and SLSTR series LST ECV datasets and the 
AATSR / SLSTR / MODIS CDR. Below is the description of this algorithm as provided in the PVASR [RD-68]. 

The standard algorithm ([RD-9], for (A)ATSR and SLSTR) uses a nadir-only (SW) algorithm with classes of 
coefficients for each combination of land cover-diurnal (day/night) condition. The physics in principle are 
the same as for other SW algorithms, such as [RD-10] which also applies coefficients to a combination of 
emissivity, water vapour and BT differences. For [RD-10] non-linearity is accounted for in the quadratic 
term, where here it is parametrised across the swath. The full form of the algorithm is presented as 
follows: 

 

 

ὒὛὝὨÓÅÃ— ρὴύ Ὢὥȟ ρ Ὢὥȟ Ὢὦȟ
ρ Ὢὦȟ Ὕ Ὕ  Ⱦ  Ⱦ 

Ὢὦȟ ρ Ὢὦȟ Ὢὧȟ ρ Ὢὧȟ Ὕ  

 

where the six retrieval coefficients as,i, av,i, bs,i, bv,i, cs,i and cv,i are dependent on the land cover (i), fractional 
vegetation cover (f) - the retrieval coefficients as,i, bs,i and cs,i relate to bare soil (f = 0) conditions, and av,i, 
bv,i and cv,i relate to fully vegetated (f = 1) conditions. The fractional vegetation cover (f) and precipitable 
water (pw) are seasonally dependent whereas the land cover (i) is invariant [RD-11]. 

The retrieval parameters d and m are empirically determined from validation and control the behaviour 
of the algorithm for ŜŀŎƘ ȊŜƴƛǘƘ ǾƛŜǿƛƴƎ ŀƴƎƭŜ όʻύ ŀŎǊƻǎǎ ǘƘŜ ƴŀŘƛǊ ǎǿŀǘƘΦ ¢ƘŜ ǇŀǊŀƳŜǘŜǊ Ř ǊŜǎƻƭǾŜǎ 
increases in atmospheric attenuation as the water vapour increases, an effect that is accentuated with 
increasing zenith viewing angle. The parameter m is supported by previous studies [RD-11], which suggest 
a non-linear dependence term on the BT difference T11 - T12 would elicit improvement in the accuracy 
of the LST retrievals. The rationale here is that the BT difference increases with increasing atmospheric 
water vapour, sinŎŜ ŀǘǘŜƴǳŀǘƛƻƴ ŘǳŜ ǘƻ ǿŀǘŜǊ ǾŀǇƻǳǊ ƛǎ ƎǊŜŀǘŜǊ ŀǘ мн ˃Ƴ ǘƘŀƴ ŀǘ мм ˃ƳΦ 

The nature of the algorithm means that land surface emissivity is implicitly dealt with through the 
regression of retrieval coefficients to land cover and bare soil / fully vegetated states. In other words, 
while LSE is not an estimated output the algorithm still uses LSE knowledge, any uncertainty of which is 
propagated in the LST derivation. This knowledge is passed to the algorithm through the land cover and 
fractional vegetation states, which themselves are regressed to emissivity states in the coefficient 
generation. Dynamic Fractional Vegetation Cover (FVC) ancillary data will be retrieved from auxiliary data. 

For the generation of the retrieval coefficients for each land coverςdiurnal (day/night) combination 
vertical atmospheric profiles of temperature, ozone, and water vapour, surface and near-surface 
conditions and the surface emissivities are required. These are input, in addition to specifying the spectral 
response functions of the instrument, into a radiative transfer model in order to simulate TOA BTs. 
Retrieval coefficients are determined by minimizing the l2-norm (Euclidean norm) - which is calculated as 
the Euclidean distance from the origin - ƻŦ ǘƘŜ ƳƻŘŜƭ ŦƛǘǘƛƴƎ ŜǊǊƻǊ όɲ[{¢). 

4.2.3. Generalised Split Window (GSW) Algorithm 

The GSW algorithm will be used in LST_cci Cycle 1 for the MODIS and SEVIRI LST ECV datasets as well as 
the Merged Dataset (AATSR / MODIS / SEVIRI). The generalised split window algorithm is a view-angle 
dependent split-window algorithm proposed for LST retrieval by [RD-12]. It is based around channels in 
the 11 and 12 µm regions.  
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The success of the generalized split-window LST algorithm depends on knowledge of the band emissivities 
for real land surfaces. In the LST_cci GSW method, emissivity information will be used explicitly rather 
than incorporating this information implicitly through land cover coefficients. For example, in the 
operational MODIS implementation band averaged emissivities for each of the two channels are used: 

 

‐
᷿ ‗‐‗ὄ‗ȟὝὨ‗

᷿ ‗ὄ‗ȟὝὨ‗
 

Where ‗ and ‗ are the upper and lower bounds of the channel, and Ὕ is the surface temperature. This 
parameter is assigned on a pixel basis according to land cover class. In cases of mixed pixels this term is 
recalculated based upon the proportion of the pixel assigned to each classification. A similar method will 
be used in LST_cci. Here, ‐  will be derived as: 
 

‐ πȢυ ‐  ‐  

Where ‐  is the mean emissivity of the two thermal channels used in the GSW algorithm. ɝ‐ is the 
difference between the two thermal channels, calculated as: 

ɝ‐ ‐  ‐   

Having determined the emissivity of the pixel coefficients these can be applied to derive an LST estimate 
similar to that given below: 
 

Ὕ ὅ ὃ ὃ
ρ ‐

‐
ὃ
ɝ‐

‐

Ὕ Ὕ

ς
ὄ ὄ

ρ ‐

‐
ὄ
ɝ‐

‐

Ὕ Ὕ

ς
 

 

Where C, A and B are coefficients derived from linear regression using simulated data as done for the UoL 
algorithm (Section 4.2.2) but adapted for the GSW. T1 and T2 are the 11 and 12 µm brightness 
temperatures.  The coefficients for GSW are dependent on satellite viewing angle and water vapour. Error 
analysis [RD-70] shows that viewing angle and atmospheric column water vapour must be considered in 
the retrieval to achieve highest accuracy over the wide atmospheric and surface conditions. The bands 
for water vapour will be of width 15 kgẗm-2 so that the first water vapour band is from [0,15) kgẗm-2. The 
bands for satellite zenith angle will be of width 5°. The retrieval coefficients are linearly interpolated 
between viewing angle and water vapour bands to minimise step changes. 

4.3.  Radiative Transfer Modelling 

Radiative Transfer for TOVS (RTTOV) is a fast Radiative Transfer Model (RTM) from the NWP-SAF [RD-25]. 
It is an efficient radiative transfer forward model for the visible, infra-red and microwave wavelengths. In 
contrast to models using a line-by-line methodology, RTTOV conceptualizes the simulation in terms of 
channel radiances. It therefore requires both an Instrument Spectral Response Function (ISRF) and a pre-
calculated set of coefficients relating the channel to sensitivities to various atmospheric parameters. 
These coefficients parameterize the gas contributions to transmittances associated with the profile. These 
requirements allow significantly increased computational speed in RTTOV compared to the line-by-line 
methodology [RD-26]. Yet this increase in computational speed leads to a reduction in the accuracy [RD-
27], although negligible [RD-71], and spectral resolution [RD-28] of the simulated radiances. The choice 
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of RTTOV facilitates fast processing of sufficient numbers of profiles to adequately characterize the entire 
range of potential atmospheric states representative of each land cover class for highest accuracy [RD-
11]. RTTOV Version 12.3 will be used in LST_cci. 

RTTOV is used in the UOL_3 (Section 4.5.1) and Bayesian (Section 4.5.2) cloud masking algorithms to 
calculate the probability of cloud cover in the observations given the background state. Retrieval 
coefficients are derived using forward modelling. Specifically, regressions between the skin temperature 
and the TOA radiances are used to populate a Calibration Database for determining retrieval coefficients. 
RTTOV is also used in the threshold tests employed in the NWC-SAF cloud masking algorithm (Section 
4.5.3). 

4.4. Calibration Database for Determining Retrieval Coefficients for the TIR 
Algorithms 

Globally robust, traceable retrieval coefficients for both the GSW and UOL approaches are generated 
using RTTOV, which allows fast processing of sufficient numbers of profiles to adequately characterise a 
wide range of potential atmospheric states representative of each land cover. Simulated brightness 
temperatures and LSTs are derived from RTTOV given inputs of vertical atmospheric profiles, surface and 
near-surface conditions, surface emissivities, and the spectral response function of the sensor of interest. 
The profile data will be provided by ERA-Interim [RD-67] for Cycle 1, which provides a large number of 
input profiles which encompass the full range of atmospheres and surfaces observed by TIR instruments 
(Section 4.6). A land cover and atmospheric conditionally uniform random sampling strategy will be used 
to select a number of clear sky profiles for each land cover class. A large sample of locations are selected 
randomly across land and ice surface types over all latitude and longitude bands to represent the full 
range of surface types across land areas [RD-19]. A temporal sampling strategy ensures intra- and inter-
annual coverage; for AATSR for example profiles can be selected from the an arbitrary day around the 
middle of each  month (15th day of each month for instance) between 2002 and 2011 with identified 
profiles closest to the day and night overpass times of the satellite of interest. The temporal sampling 
strategy will be expanded to additional years in future Cycles to maximise representativeness inter-
annually. Representative emissivity information is extracted for the locations of the profile data from 
auxiliary datasets (Section 4.6). These selected profiles are then inputs to the RTTOV forward model along 
with the various sensor spectral response functions. RTTOV then yields the brightness temperatures and 
LSTs for the given sensor and location and these are used to generate retrieval coefficients for all cases of 
land cover type, fractional vegetation and water vapour using linear regression. The Calibration Database 
comprises a global set of independent profiles and emissivity values covering all land cover types and 
distributed across all latitude and longitudes and capturing the seasonality of the land surface, as well as 
the coefficients generated from these profiles. 

In LST_cci after Cycle 1 (in other words for Cycles 1.5 and 2) an extended version of the Benchmark 
database constructed for the Round Robin [RD-68] will be used to determine retrieval coefficients for TIR 
algorithms. This extended benchmark dataset will use ERA5 Atmospheric profile Data, CAMEL Emissivity 
Data and ESA CCI Land Cover data. ERA5 profiles and CAMEL emissivity data are used as an input to RTTOV. 
Representative profiles distributed across the globe are extracted, including simulated brightness 
temperatures, LST, elevation and other atmospheric information. Representative emissivity information 
is also extracted from CAMEL for the locations of the profile data. The rationale here is that the latest 
ECMWF data and emissivity data is exploited, which are anticipated to be more representative given the 
improved resolution. This also ensures consistency with other CCI. These parameters are inputs to the 
RTTOV forward model along with the various sensor spectral response functions. RTTOV then yields the 
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brightness temperatures and LSTs for the given sensor and location and the Calibration Database is 
generated as described above for Cycle 1. 

The calibration of the GSW used within the LSA-SAF to retrieved LST for the GEOs (MSG, MTSAT and GOES 
series) relies on radiative transfer simulations of TOA brightness temperatures performed with the 
MODerate spectral resolution atmospheric TRANSsmittance algorithm (MODTRAN4) [RD-63]. The 
difference to using RTTOV is expected to be negligible, but any difference will be assessed and if required 
a change in model would be anticipated. The simulations are performed for the database of global profiles 
of temperature, moisture, and ozone compiled by SeeBor [RD-64] for clear sky conditions. This SeeBor 
database described above was split into two subsets ς one used for the calibration of the LST GSW, and 
an independent one used for verification of the fitted algorithm.  A full description of the methodology to 
select the calibration profiles may be found in [RD-65]. The parameters in the GSW algorithm are 
estimated for 8 different classes of total column water vapour (W), up to 6 cm, and for 16 classes of VZA, 
up to 75o, ensuring that all ranges of atmospheric attenuation within the thermal infrared are covered. In 
order to ensure that all W and VZA class have enough representative cases to provide robust parameter 
estimations, the radiative transfer simulations are performed over the all selected atmospheric profiles 
with the following settings: (i) surface temperature ranging between Tskinς15 and Tskin+15 K in steps of 
5K; (ii) channel emissivities of both TIR channels covering the range 0.96<‐ <0.995 in steps of 0.0175 and 
‐ -0.030<‐ <‐ +0.018 in steps of 0.006; and (iii) VZA ranging from nadir to 75o in steps of 5o. It is worth 
noting that the whole simulations cover a range of Tskin between 230 K and 341 K, and a range of [Tskin 
minus T2m] from -20 to +33 K. These are the optimum settings for representativeness when using the 
SeeBor database. 

After Cycle 1, all GEO products will be reprocessed with a GSW calibrated with the benchmark dataset 
constructed for the Round Robin, in order to provided harmonized data for the Merged Product. A natural 
consequence of this is that all single-sensor GEO ECV Products will also be consistent with LEO ECV 
Products with respect to coefficient generation. 

4.5. Identification of Observations Valid for Land Surface Temperature 
Estimation from Thermal Infrared Sensors 

Cloud screening is a fundamental step for Thermal Infrared (TIR) LST retrieval. For LST_cci products the 
cloud mask is given, or applied to, Level 2 and Level 3 LST products.  

Traditionally, threshold based techniques have been used to detect cloud but these often fail under 
difficult circumstances -- for example, in the detection of thin cirrus or low-level fog. Three cloud detection 
algorithms which are being considered for use in LST_cci Cycle 1 for TIR LST Products are presented here:  

× The UOL_3 algorithm (Section 4.5.1). 

× Bayesian algorithm (Section 4.5.2) 

× the NWCSAF Cloud Mask Algorithm (Section 4.5.3) 

 

The UOL_3 Algorithm is expected to be applied to single sensor products produced from sensors on Low 
Earth Orbit (Low Earth Orbit) platforms. Either the Bayesian or the UOL_3 algorithm will be applied to the 
CDR depending on which is most appropriate. The NWC-SAF Cloud Mask Algorithm will be applied to 
single sensor products produced from sensors on Geostationary (GEO) platforms. Updates will be made 
to this document as the algorithms are developed and the best algorithm for each LST_cci product is 
identified. 
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4.5.1. UOL_3 Algorithm 

The UOL_3 algorithm is a semi-Bayesian cloud masking approach using the probability of clear-sky 
conditions which has been developed at University of Leicester [RD-19]. A pixel-level cloud mask is derived 
using a combination of simulated brightness temperatures and observational climatology. The approach 
is equally valid for both day and night-time retrievals as this method is independent of visible wavelength 
information.  It has been implemented in the ESA DUE GlobTemperature project previously for ATSR data 
records [RD-19] and is being implemented operationally for SLSTR [RD-57].  

This cloud masking algorithm uses atmospheric profile data to predict clear-sky conditions for the 
coincident space and time of a given satellite sensor observation. Coincident clear-sky brightness 
temperatures are derived by bilinear interpolation between surrounding ECMWF profile locations and a 
temporal interpolation between the 6-hourly analysis fields. ERA-Interim data [RD-67] will be used for 
profiles in Cycle 1 of LST_cci, moving to ERA-5 data subsequently. The coincidence is modelled through 
bilinear interpolation of surrounding profiles and temporal interpolation between 6-hourly analysis fields. 
On a spatial plane these modelled profile data correspond to the tie-point grid of the respective 
instrument and orbit granules. For example, when applied to AATSR orbit granules, which are orbit 
subsets of pixels every 25 km across track and 32 km along track, are used [RD-19]. 

An observational climatology is acquired for each 5x5° grid cell (chosen to ensure sufficient 
representiveness) for each of the land covers and diurnal conditions (day/night) required by an offline 
enhanced LST retrieval algorithm [RD-58, RD-59]. In Cycle 1 this has been stratified by the 27 land covers 
of the ATSR Land Biome Classification (ALB2) [RD-19]. In future Cycles this will be replaced by LC_cci 
classes. The mean and standard deviations for clear-sky conditions are stored in a LUT. Using RTTOV (see 
Section 4.5.1), expected clear-sky brightness temperatures / brightness temperature differences are 
simulated for these profile data. To calculate the clear-sky probability at each pixel location a probability 
density function (PDF) assuming a normal distribution is constructed from the simulated mean brightness 
temperatures for the corresponding granule and the standard deviation of the brightness temperature 
from the observational climatology from the corresponding 5x5° grid cell for the given month, land cover 
and diurnal state as shown in Figure 4 [RD-58]. A per-pixel cloud mask is generated from comparing the 
pixel brightness temperatures/brightness temperature differences with the pixel probability density 
functions. Pixels are identified as cloudy if the combined probabilities are less than a set of confidence 
thresholds. For daytime observations, the cloud flag is set if either the observed 12 µm brightness 
temperature or 11 - 12 µm brightness temperature difference fall outside of the 95% confidence levels of 
the corresponding simulated PDFs. The thresholds themselves are simply for converting the probabilities 
into a binary mask. Users can choose to rather use the probabilities. For night-time observations, the 12 
µm brightness temperature and the 11 - 3.7 µm differences are used. The actual tests relate to the 
optimum criteria in which clouds can be distinguished. For granules where insufficient profile data are 
available to simulate the expected brightness temperatures, or where incompatibilities between the 
atmospheric and surface states result in an RTTOV error (which is a rare occurrence) then the individual 
pixel cloud flags are instead derived from other cloud masking routines, specifically operational flags. 
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Figure 4: For each granule of an AATSR orbit (left), the expected 12 µm brightness temperature is simulated from 

coincident profiles. The PDF of observed 12 µm brightness temperatures for each land cover-diurnal condition, 

given the space and time position, is also determined (top-right in green). This PDF is moved so that the mean 

equals the expected mean for the granule and the new PDF represents the expected clear-sky conditions 

(bottom-right in green). Figure 1 from [RD-58]. 

4.5.2. Bayesian Algorithm 

 
The Bayesian cloud mask, which was developed at the University of Reading [RD-72], calculates the 
probability of clear-sky P(c|yo,xb) given the observation vector (yo) and prior knowledge of the background 
state (xb): 
 

ὖὧȿ◐ȟ● ρ
ὖὧӶὖ◐ȿ●ȟὧӶ

ὖὧὖ◐ȿ●ȟὧ
 

 

Where ὧӶ and ὧ denote cloud and clear conditions respectively.  The prior probabilities of clear and cloudy 
conditions (ὖὧ and ὖὧӶ) are defined using ECMWF ERA-Interim total cloud cover [RD-32] in Cycle 1. 
ERA5 will be used in Cycle 2. 

ὖ◐ȿ●  is the probability of the observations given the background state.  For clear-sky observations 
this is calculated using the RTTOV version 11 fast forward model simulations in Cycle 1 (see Section 4.5.2; 
moving to RTTOV 12.3 in Cycle 2), with cloud properties specified using an empirical PDF as these are 
computationally expensive to calculate. This cloud detection algorithm has been successfully applied to 
the Sea Surface Temperature (SST) CDR for ATSR instruments [RD-33; and RD-34] and for the AVHRR data 
record in Phase 2 of the SST CCI project.  Previous work has applied these techniques to GOES instruments 
[RD-35; and RD-36] demonstrating its applicability to geostationary sensors. The mask is also used 
operationally for SST products from SLSTR SST and C3S. In LST_cci this cloud mask is being investigated 
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for adaptation to terrestrial surfaces. Such investigation includes optimised use of VNIR/SWIR information 
and appropriateness of a priori data. Full details will be presented in the next version 

4.5.3. NWCSAF Cloud Mask Algorithm 

The cloud mask to be applied to all GEO single sensor products is the Satellite Application Facility on 
Support to Nowcasting & Very Short Range Forecasting (NWC SAF) cloud mask algorithm (also known as 
CMA). This cloud mask has been designed to be applicable to imagers on board meteorological 
geostationary satellites [RD-20]. It aims to support nowcasting applications as well as remote sensing of 
continental and oceanic surfaces, including identification of cloud free areas for LST products. This cloud 
mask algorithm also provides information on the presence of snow/sea ice, dust clouds and volcanic 
plumes [RD-20]. 

This algorithm is based on a series of satellite dependent threshold tests [RD-20]. The first step in the 
process aims to identify most pixels containing cloud and snow using a series of multispectral threshold 
tests based on factors such as viewing geometry, surface temperature and atmospheric water content 
(from Numerical Weather prediction fields), elevation, and climatological data. A second, optional step 
uses a smaller series of multispectral tests on thresholds computed from RTTOV applied on-line to NWP 
vertical profiles. This allows a more accurate threshold computation a detection of low or thin high clouds 
that remained undetected in the first set of tests. Then an analysis of the temporal variation in a short 
time period (around 15 minutes) of a combination of channels allows the detection of rapidly moving 
clouds. Fourthly, a specific treatment combining temporal coherency analysis and region growing 
technique allows the improvement of low clouds detection in twilight conditions. There is then another 
optional step which involves an analysis of solar channels at high spatial resolution to detect sub-pixel 
clouds inside pixels at default horizontal resolution. Finally, a spatial filtering is applied to cold areas, cloud 
edges (over ocean), isolated cloud pixel (land) and snow-area edge. For the additional information on dust 
clouds and ash clouds there are further processes to identify these features, which are applied to all pixels 
and stored in separate flags. 

4.6. Auxiliary Datasets for Thermal Infrared Retrievals 

The following section gives a description of the auxiliary datasets used for cloud detection and thermal 
infrared retrieval algorithms utilised in LST_cci. This section also described how these auxiliary datasets 
are applied in each algorithm. 

4.6.1. Land cover 

It should be noted that for initial LST products provided by LST_cci in Cycle 1, land cover information will 
be provided by the ATSR Land Biome Classification (ALB2) [RD-19]. Appendix A provides a table defining 
the ALB2 Land cover Classification.  

Land cover information for LST_cci products will be provided by the ESA CCI Land Cover maps developed 
by the Land Cover CCI. These land maps are produced mainly from the MERIS FR time series, but also the 
MERIS RR dataset and SPOT Vegetation (SPOT-VGT) [RD-41]. Land cover maps are derived using a 
classification model based on the GlobCover unsupervised classification chain. The processing chain was 
developed with the aim of being globally consistent, but also regionally tuned. In order to do this, the 
GlobCover processing chain was improved by including machine learning classification steps and 
developing a multi-year strategy [RD-41]. CCI land Cover information will be used in the UOL retrieval 
algorithm, in combination with other variables, to determine the most appropriate coefficients to apply. 
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It will also be used in the UOL_3 and Bayesian cloud masking algorithms. Appendix A provides a table 
defining the CCI Land Covers. 

4.6.2. Fractional Vegetation 

Fractional vegetation cover information for LST_cci is provided by the Copernicus Global Land Cover 
Services FCOVER dataset V2.0 (https://land.copernicus.eu/global/products/fcover). This global dataset is 
available at 1/112° resolution every 10 days from 1999 onwards. It is acquired using a moving temporal 
window of around 30 days [RD-21, RD-19]. FCOVER is generated from normalized nadir reflectances in 
the red, near-infrared, and shortwave infrared wavebands of SPOT-4 and SPOT-5  vegetation sensors using 
a neural network trained with the 1-D radiative transfer models SAIL and PROSPECT [RD-22]. Data values 
range from 0.0 (no vegetation or snow/water surface types) to 1.0 (full vegetation). Validation of this 
product shows that it is good quality with a spatially consistent global distribution of retrievals [RD-23]. 
For use in LST_cci processing, an FCOVER value will be assigned to each sensor pixel via a nearest 
neighbour approach. For any pixel where no FCOVER values exist in a given 10-day window (either through 
missing or poor quality data) the pixel is filled from a climatology [RD-19]. The climatology is constructed 
from a complete temporal window of the same 10-day period across all years where the FCOVER dataset 
is available.  

Fractional vegetation is used in the UOL retrieval algorithm, in combination with other variables, to weight 
the appropriate retrieval coefficients applied in the algorithm. For the SEVIRI product, fractional 
vegetation will be used as follows. 

Within the LSA-SAF, the fractional vegetation cover is used to derive TIR emissivity [RD-66] (see Section 
4.6.3).  FCOVER is important to weight the emissivities between bare soil and fully vegetated states. The 
same fundamental approach is employed for both the SEVIRI single-sensor product and the UOL algorithm 
in Cycle 1. For future cycles we will investigate whether a consistent FCOVER dataset is needed to 
maximise consistency or if an appropriate external emissivity dataset is more suitable. 

4.6.3. Emissivity 

CAMEL 

The Combined ASTER and MODIS Emissivity for Land (CAMEL) database is a global monthly mean 
emissivity dataset spanning the years 2000 ς 2016. A climatology of CAMEL data will be used after 2016 
if regular updates of this dataset are not available. It assimilates both ASTER Global Emissivity Database 
retrieved values and University of Wisconsin-Madison MODIS Infra-red Emissivity dataset values. The 
CAMEL dataset contains 12 emissivity values at different wavelengths from 3.6 to 14.3 µm at a resolution 
of 0.5° [RD-24]. Due to the dataset originating from satellite observations, it is highly relevant to realistic 
materials observed from space and should remove materials in spectral libraries, which are too fine a 
scale to be useful. The benchmark dataset and the retrievals testing in this study use wavelengths: 10.8, 
11.3 and 12.1 µm. 

CAMEL emissivity data will be used in the SW approximation algorithms (Section 4.2.1), explicitly in the 
case of the GSW algorithm (Section 4.2.3) to calculate LST. Emissivity from CAMEL is employed in a 
Calibration Database for determining retrieval coefficients for all SW approximation algorithms. 

For initial LST_cci products in Cycle 1, the CIMMS Baseline Fit Emissivity Database [RD-60] will be used.   

https://land.copernicus.eu/global/products/fcover
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In the future it is expected that emissivity for the applications detailed in this section will be provided 
from the work being done as part of LST_cci Work Package 2.9: Temperature and Emissivity Separation 
from MODIS multispectral TIR data (CCN to Baseline Project).  

CIMMS 

For initial LST_cci products in Cycle 1, the CIMMS Baseline Fit Emissivity Database [RD-60] will be used.  
CIMMS is a monthly dataset 0.05° with emissivities available at ten wavelengths between 3.6˃m and 
14.3˃ m, - ƛƴŎƭǳŘƛƴƎ ŜƳƛǎǎƛǾƛǘȅ ŀǘ млΦу˃Ƴ ŀƴŘ мнΦм˃ƳΦ Lǘ Ƙŀǎ ōŜŜƴ ŘŜǊƛǾed using the MODIS operational 
land surface emissivity product and by applying a baseline fit method to fill in the spectral gaps between 
the six infrared emissivity wavelengths provided. The dataset is available as monthly filled files from 2003 
to 2016 in netCDF format. A monthly climatology has been derived for use outside of the available data 
window. The data is spatially and temporally interpolated onto a 1 km grid for the given day of the satellite 
acquisition for use in LST_cci cycle 1. 

VCM 

The Vegetation Cover method (VCM) uses pixel fraction of vegetation cover to derive Land Surface 
Emissivity (LSE) [RD-29]. In the VCM, LST is considered to be a combination of the emissivity from 
vegetation and bare ground across the land surface. The method for VCM is summarised below and can 
be found in detail in [RD-29] and [RD-31]. 

The vegetation and bare ground emissivities per channel are estimated for land classes within the 
International GeosphereςBiosphere Program (IGBP) database [RD-30]. For each IGBP class, the typical 
vegetation and bare ground components of that class are identified. Then laboratory spectral reflectances 
are used for the difference surface types within that class (taking into account sensor channel response 
functions). Then appropriate bidirectional reflectance distribution function models [RD-75] are applied to 
the channel emissivities to generate the LSE for the structured land surfaces. VCM assumes that the 
surface is Lambertian and ignores the influence of shadow and double-scattering processes [RD-29]. It is 
possible to transform this to other land classifications and this will be looked at in future cycles to ensure 
consistency. For vegetated land covers, emissivity is considered to be the result of the contribution from 
vegetation and bareground proportions, following the VCM ([RD-29] and [RD-31]).: 

‐ ‐ Ὂὠὅ‐ ρ Ὂὠὅ 

here FVC is the pixel fractional vegetation cover, and ‐  and ‐  are the vegetation and bareground 

emissivities, respectively, per channel. Both ‐  and ‐  are estimated for land cover classes from 

spectral libraries.  

VCM will be used in the single-sensor LST retrieval from SEVIRI as this is expected to be optimum for this 
product. 

4.6.4. Atmospheric Variables 

Atmospheric variables (for example Total Column Water Vapour (TCWV), precipitable water and 
atmospheric temperature) which is used as an input to TIR retrieval algorithms, is provided in LST_cci by 
the ECMWF Re-analysis 5 (ERA5) [RD-17]. ERA5 is a re-analysis dataset which provides hourly estimates 
of a significant number of land and atmospheric variables over the full globe at a spatial resolution of 
30km grid. It is the successor to the widely used ERA-Interim Re-analysis dataset [RD-67]. ERA5 currently 
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has a temporal coverage similar to other reanalyses (from 1979 to present), but more years are due to be 
added to extend this dataset back to 1950.  

Precipitable water is used in the UOL retrieval algorithm, along with coefficients selected using land cover 
and fractional vegetation information, to derive LST. Water vapour information and atmospheric 
temperature are inputs required to determine retrieval coefficients for the GSW algorithm. Atmospheric 
profile data from ERA5, which is resolved with 137 atmospheric levels from the surface up to a height of 
80km., is used in the UOL_3 cloud masking algorithm to derive clear sky probability information. 
Furthermore, ERA5 is employed to create a Calibration Database for determining retrieval coefficients. 

It should be noted that ERA-Interim will be used instead of ERA-5 in Cycle 1 of LST_cci. ERA-Interim is the 
predecessor of ERA-5. It also provides hourly estimates of a significant number of land and atmospheric 
variables over the full globe from 1979 to present with a spatial resolution of 80 km with 60 atmospheric 
levels from the surface up to 0.1 hPa. ERA-Interim was based on a 2006 release of the IFS (Cy31r2) and is 
due to be replaced by ERA-5 in 2019. The use of ERA-Interim will be superseded by ERA5 for all subsequent 
cycles. 

4.6.5. Snow masking 

Snow masking information will initially be provided by the Interactive Multisensor Snow and Ice Mapping 
System (IMS) Daily Northern Hemisphere snow and ice analysis.  

The IMS snow maps are daily maps of Northern Hemisphere land, sea, snow and ice on an equal area 
polar stereographic grid at 1 km, 4 km and 24 km resolution, depending on time period. The IMS product 
is manually created by an analyst using the ǇǊŜǾƛƻǳǎ ŘŀȅΩǎ La{ ƳŀǇΣ ǎŀǘŜƭƭƛǘŜ ƛƳŀƎŜǊȅΣ ŀǳǘƻƳŀǘŜŘ ǎƴƻǿ 
mapping algorithms and other ancillary data [RD-18]. It is available from 1997 to present with higher 
resolution maps available for shorter time periods. For inclusion in LST_cci algorithms and products, Daily 
IMS maps of snow and ice presence in the northern hemisphere at a resolution of 0.01° are produced by 
nearest neighbour interpolation of 4km IMS data [RD-19]. Prior to 2004, when 4km IMS data became 
available, a climatology is used. For the Southern Hemisphere we use a channel ratio method based on 
[RD-74]. 

Snow masking is part of the land cover information used in the UOL retrieval algorithm to determine the 
most appropriate coefficients to apply. It is also utilised in the UOL_3 cloud masking algorithm. Further 
updates to LST_cci products will include a move to using ESA Snow Cover CCI products for snow masking 
once they become available. 

4.7. Uncertainty Model for Thermal Infrared Algorithms 

 
Following the agreed approach being undertaken in other projects such as ESA DUE GlobTemperature 
[RD-15] and H2020 EUSTACE [RD-16], whereby SST, LST and IST all conform to a standardised uncertainty 
model. For LST this has been implemented this for AATSR, MODIS and SEVIRI data, which are the sensors 
of interest here. 
 
Generally, for each pixel, three components of uncertainty are provided, representing the uncertainty 
from effects whose errors have distinct correlation properties: 

× random (no correlation of error component between cells); 

× locally systematic (cƻǊǊŜƭŀǘƛƻƴ ƻŦ ŜǊǊƻǊ ŎƻƳǇƻƴŜƴǘ ōŜǘǿŜŜƴ άƴŜŀǊōȅέ ǇƛȄŜƭǎύΤ 
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× [large-ǎŎŀƭŜϐ ǎȅǎǘŜƳŀǘƛŎ όŎƻǊǊŜƭŀǘƛƻƴ ƻŦ ŜǊǊƻǊ ŎƻƳǇƻƴŜƴǘ ōŜǘǿŜŜƴ άŘƛǎǘŀƴǘέ ǇƛȄŜƭǎύΦ 

Locally correlated errors are modelled via spatio-temporal correlation length scales that determine how 
an observation influences the analysis in the vicinity of its time-space location. Systematic errors will be 
accounted for by allowing a bias to be determined within the analysis procedure between different 
sources of data, whose magnitude is conditioned by the uncertainty attributed to systematic effects. 
 
This approach is both a necessary minimum, since locally systematic effects are significant, and preclude 
use of a simple random/systematic model and an approximation, in that there are several effects that 
have a systematic aspect, and all of these are required to be partitioned into either the locally systematic 
or systematic component. This is though, a significant advance on what has generally been done for LST 
datasets to date. Moreover, this three-component model applies to all satellite processing levels (L1, L2, 
L3, and L4). Full details are presented in the End-to-End ECV Uncertainty Budget [RD-69]. Here we only 
present what is specifically included in the output products. 
 

4.7.1. Random 

 
The random component of L1 channel uncertainty can be denoted as uran(yc). The effect of this combined 
across all channels needs to be propagated through the retrieval to give a contribution to the estimate of 
uncertainty from random effects uran(x) in the retrieved surface temperature. The assumption is that the 
radiance noise is sufficiently Gaussian and small that the law of propagation of uncertainty is adequate 
for this propagation, which means: 
 

ό ȟ ὼ
Ὑ

ώ
ό ώ  

 
Emissivity is an auxiliary input to all estimates of thermodynamic temperature from BTs, whether explicit 
or implicit. For LST, there is a potentially significant random error component caused by the pixel-to-pixel 
variations in emissivity not captured in emissivity auxiliary information because it is related to variability 
on the ground that is not captured in emissivity atlases/models. The associated uncertainty can be 
estimated as: 
 

ό ȟὼ
Ὑ

‐
ό ‐  

 
Where, some estimate of the uncertainty in emissivity per channel is required. In practice, this is  
estimated as the magnitude of pixel-to-pixel scale emissivity variability within areas that, based on same 
land cover classes being treated as having a common emissivity. Emissivity errors are estimated per land 
class based on both existing literature and validation studies. Full details are included in [RD-69]. 
 
The total random component is the acquired by adding the individual components in quadrature. 
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4.7.2. Locally systematic 

Atmospheric fields are correlated on timescales >1 day and length scales >100 km, and it is assumed that 
errors in estimates of these fields from NWP are correlated on the same scales. For coefficient based 
retrieval methods the retrieval ambiguity is a contributor of residuals in the fit. For radiative-transfer 
based retrieval coefficients, simulated-retrieved and simulation-input surface temperatures can be 
compared. The standard deviation of this input and output difference is an estimate of the magnitude of 
this locally correlated form of uncertainty. The calculation of the uncertainty can be done on stratified 
data to parameterise the variations in magnitude of this form of uncertainty. For each range of satellite 
viewing angle and water vapour (being the primary sources of variability), the uncertainty is estimated as: 
 

ό ȟ ὼ ὠὥὶὼ ὼ  

 
LST retrieval assumes an emissivity which may be driven by auxiliary land classification information and/or 
and observed vegetation indices. Across a particular land class area, there may be a mean difference 
between the assumed and true mean emissivity. This is thus a locally correlated effect on the scales of 
emissivity variability. The form of the propagation to L2 uncertainty is estimated as: 
 

ό ȟὼ
Ὑ

‐
ό ‐  

 
This locally correlated component is based on pixels for the same land cover having the same error 
characteristics. This does not capture sub-pixel variability for any given pixel within a land cover, which is 
captured above in the random component, and for which high resolution emissivity data are used to 
quantify the error properties. The correlation length scale is dependent on the source of the uncertainty. 
As a result, atmospheric and surface related uncertainties are considered and provided separately and 
propagated as either correlated or uncorrelated uncertainties as appropriate for a given product. The 
total locally correlated component is the acquired by adding the individual components in quadrature. 
 

4.7.3. Systematic 

This includes components such as the uncertainty in the radiative transfer model. It is assumed here that 
known corrections have been applied by data producers, either at L1 or in the retrieval process to L2, and 
that what remains is describable as an uncertainty in the bias of the satellite surface temperatures (i.e. 
the skin temperature of the surface the satellite sees) relative to other data sources of temperature. 
Knowledge of the satellite engineering specifications and/or validation performance may allow a 
reasoned estimate of the likely magnitude of residual biases. 

Since the different components are independent of each other they are combined in quadrature for a 
total uncertainty per pixel in the product. 
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5. Retrieval of Land Surface Temperature from Microwave 
Sensors 

In the LST_cci open algorithm intercomparison round-robin, the performance of different LST retrieval 
algorithms for a set of specific thermal infrared and microwave satellite sensors was assessed to identify 
the best algorithms for a future climate quality operational system. The algorithms chosen for LST_cci 
Cycle 1 MW products is:  

× the NNEA Algorithm (MW) 

¾ for the Special Sensor Microwave/Imager (SSM/I) LST 

In the following section a description of MW retrievals is presented, along with a description of the 
retrieval algorithm chosen for use in LST_cci. 

5.1. Physics of the Problem 

As in the TIR region of the electromagnetic spectrum, MW instruments on satellites designed for retrieval 
ƻŦ ǘƘŜ ŜŀǊǘƘΩǎ ǎǳǊŦace parameters also use spectral windows with large atmospheric transmission. Typical 
measuring channels are placed around 6, 10, 18, 37, and 89 GHz. For the low frequencies the atmospheric 
transmission is very high and the impact of the atmospheric attenuation in the accuracy of the LST 
retrieval is small. This is also valid for atmospheres with clouds, as the emission from liquid water acts as 
a weak source when compared with the large emission from the land surface. This is a major difference 
with respect to the TIR, where the presence of clouds prevents the instrument from seeing the radiation 
from the surface. At the higher frequencies, especially at 89 GHz, cloud contribution can be significant. 
The scattering depressions in the radiation emitted by the surface can be important for clouds containing 
large ice particles, affecting the accuracy of the LST retrieval. Emissivity varies more in the MW region 
than in the TIR, showing spatial and temporal variability that needs to be accounted for in the retrieval. 

Given the limited impact of clouds, the MW LST can complement the TIR estimations. However, retrieving 
LST from microwaves is more challenging than in the TIR. First, at the large wavelengths of the MW region 
the Rayleigh-Jeans law is valid and the emitted radiation from the surface is the direct product of the 
emissivity and the surface temperature. Compared with the TIR, this results in a stronger dependence on 
the emissivity of the MW signal. Furthermore, the MW emissivity varies more with surface properties 
such as soil moisture, vegetation cover, or the presence of snow, compared with the TIR emissivity.  In 
addition, as the antenna aperture is function of the wavelength, the spatial resolution of the MW 
observations degrades with decreasing frequencies, whereas the atmospheric contribution to the signal 
tends to increase with frequencies. The spatial resolution of the current MW imagers is typically 10 to 20 
km at the frequencies of interest, a factor 10 to 100 coarser than the current TIR observations. Moreover, 
MW observations are only available from polar satellites, contrarily to the TIR also observed from 
geostationary orbits, thus limiting the time sampling of the MW observations. Lastly, the microwave 
radiation can emanate from the subsurface, not only from the surface skin: the lower the frequency, the 
larger the wavelengths, and the larger the penetration into the subsurface.  

5.1.1. Mathematical description 

In the MW region, the intensity of the radiation is commonly expressed in terms of brightness 

temperature, i.e., the temperature a black body would have to match the intensity emitted by a given 

source.  In this region, the Rayleigh-WŜŀƴǎ ŀǇǇǊƻȄƛƳŀǘƛƻƴ ƻŦ ǘƘŜ tƭŀƴŎƪΩǎ ƭŀǿ ƛǎ ǾŀƭƛŘΣ ŀƴŘ ǿƛǘƘ ǘƘŜ 

emissivity defined as the ratio of the radiance of a grey body with respect to the radiance of a black body 
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at the same physical temperature, the brightness temperature becomes the direct product of the 

emissivity and the physical temperature.  Using that relationship, the brightness temperature observed 

by the MW space-borne radiometer at frequency ‡ and polarization ὴ assuming surface specular 

reflection and non-scattering atmosphere may be written: 

Ὕὦȟ  Ὕᴻ  † ȟὝὩ ρ ȟ Ὕ
ᴽ   

Ὕᴻ  † Ὕ
ᴽ  ȟ † ὝὩ  † Ὕ

ᴽ  

ὃ   ȟ ὄὝὩ  ὅ  

where † is the total atmospheric transmittance along the sensor line of sight, Ὕᴻ and Ὕᴽ represent the 

upwelling and downwelling atmospheric emission, respectively, ȟ is the surface emissivity, ὝὩ is the 

effective emission temperature of the surface, and the ὃ , ὄ and ὅ terms are abbreviations of the 

corresponding terms. Dependence of these variables on sensor viewing angle is omitted since we observe 

at a constant zenith angle close to 53 deg.  

The effective emission temperature of the surface will be the parameter to be estimated as the MW LST. 

If the terms ὃ , ὄ and ὅ and the emissivity can be properly characterized, the LST can then be retrieved. 

In some specific locations, especially in very dry and sandy areas, the effective emission temperature can 

be significantly different from the LST, because of the penetration of the microwave radiation into the 

sub-surface. These pixels will be duly associated with larger error estimates.   

5.1.2. Emissivity  

As in the TIR, variations in surface properties change the surface emissivity and the emitted MW radiation. 
The variations are larger than in the TIR. For instance, at 37 GHz and horizontal polarization, emissivity 
values can get below 0.8 for some outcrops in arid regions, and even lower in regions where standing 
water is in the footprint of the observation.  Without significant changes in surface conditions, the 
emissivity is quite stable for a given location and month, with a reported variability < 0.02 for day-to-day 
variations from satellite emissivity retrievals [RD-42]. There are noticeable emissivity variations for 
different surface types, with higher (lower) emissivity for vegetated (arid) regions. Different to the TIR, 
there can be significant variability also within a given surface type due to changes in surface conditions, 
mainly related to variation in soil moisture and vegetation cover. Especially challenging are the snow-
covered surfaces, where melting processes and snow metamorphisms can result in large emissivity 
variations, and regions where seasonal flooding can occur, due to the large changes in the electromagnetic 
permittivity associated to the presence of water.  

Details of the auxiliary emissivity products used in LST_cci are given in Section 5.4.1. 

5.2. Algorithm Description 

5.2.1. NNEA Algorithm 

From the formulation given in Section 5.1.1, we can express the LST as: 
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In principle, one single channel could be used to derive the LST assuming that all the terms in the equation 

can be properly characterized. But given the uncertainties associated to those calculations, retrieving LST 

using simultaneously a larger number of frequency channels further constrains the inversion problem, 

resulting in more accurate LST retrievals, as shown in the LST_cci open algorithm inter-comparison round-

robin. This is similar to the TIR, where the double-channel algorithms are more suitable to take into 

account the atmospheric absorption and emissivity effects.  

Comparable to the TIR, the MW retrieval algorithm needs to deal with emissivity and atmospheric 

variations. To deal with emissivity changes, pre-calculated microwave monthly mean emissivity estimates 

available from the Tool to Estimate Land Surface Emissivity in the Microwave (TELSEM, see Section 5.4.1) 

are used as inputs to the retrieval algorithm, together with the brightness temperatures. Concerning the 

atmosphere, no temperature or water vapour information is used as input, but the information is 

introduced into the retrieval by also including the 22 GHz channel, which is close to a water vapour line 

and therefore sensitive to changes in atmospheric conditions. 

The function given by the previous equation is approximated by a non-linear regression between the LST 

and the combination of the brightness temperatures and emissivity values, with the coefficients of the 

regression determined with a calibration database (see Section 6.8). The non-linear regression is built by 

a standard multi-layer perceptron (MLP) as in [RD-14]. MLPs are a type of neural network commonly used 

to reproduce transfer functions between observations and related geophysical parameters given their 

proven capability to approximate any continuous function with an arbitrary precision [RD-43].  

A MLP of one input layer of 14 nodes (the inputs of function F, i.e., the brightness temperatures and 

emissivities for the 7 MW channels), one hidden layer of 10 nodes, and one output node (the LST), will be 

used here. If the input vector of the MLP is called i and the output of the MLP u, the way the input signal 

propagates through the MLP is given by:  

ό  Ὢὡ Ὥ ὦ  Ὢὡ Ὢ ὡ Ὥ ὦ ὦ  

where Ὢ is the activation function, ὡ  the weighting matrix, ὦ  the bias, and Ὥ the input at layer j, in 

this case o is for the output layer and h for the hidden layer. Hyperbolic tangent and linear activation 

functions are used for the hidden and output neurons, respectively.  

The weight and biases can be considered as the regression coefficients of the non-linear model provided 

by the MLP. These are determined during a learning phase, called training, where the weights and biases 

that minimize a cost function, determined by a set of input-output examples, are found. Here the 

examples are provided by the calibration database described in Section 6.8, while the cost function can 

be expressed as: 

ὅ  ὸ όώ  

where Z is the number of samples in the calibration database, ἀ ἁis the standard 2-norm, and όώ  is the 
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output vector of the MLP for the corresponding input vector.  In other words, we minimize the mean sum 

of squares of the difference between targets (the training LSTs of the calibration database) and current 

outputs of the MLP to the corresponding input vectors (the training brightness temperatures and 

emissivities). The initial weights of the neural network are randomly initialized by the Nguyen-Widrow 

algorithm [RD-39], and the final weights are assigned by a Marquardt-Levenberg back-propagation 

algorithm [RD-44]. To prevent over-fitting to the training data set, a cross-validation technique is used to 

monitor the evolution of the training error function.  

When training the MLP, if the initial weights are slightly changed, or a new set of examples from the 

calibration database are selected, the minimization of the error function results in a new set of final 

weights and corresponding transfer function. In most cases the resulting transfer functions are very close, 

and for well-constrained inversion situations the variability in the output (here the retrieved LST) by 

applying the different transfer functions is small. Likewise, a large variability is an indication of inversion 

situations where the MLP has difficulties to solve the inverse problem. This is used in the retrieval 

algorithm as a form of quality control for the inversions. In practice, 100 neural networks with different 

initial conditions are trained, the estimated LST is the median of the 100 retrieved values, and the 

variability of the 100 estimates is monitored to capture cases where the inversion situation seems 

problematic.  

Permanently ice-covered surfaces have a distinct range of LST values and surface emissivities. Tests have 

shown that the LST accuracy improves if one regression is dedicated to invert observations over Antarctica 

and Greenland, while a second one is devoted to the remaining continental land [RD-14]. Therefore, we 

adopt the same strategy here, and two sets of 100 MLPs are trained separately. 

The MW retrieval algorithm is applied to the brightness temperatures at the original locations of the 

sensor swath acquisitions. Given the different channel footprints, the retrieval combines information at 

different spatial resolutions. As the 19.35 GHz channels have a resolution of ~60 km, information from up 

to ~ 60 km affects the LST retrievals. However, retrieval tests show that the 37.0 GHz channels are the 

ones having more weight in the retrieval and as such the effective spatial resolution may be considered 

to be of the order of ~30 km, corresponding to the resolution of those channels.  

5.3. Calibration Database for Determining Retrieval Coefficients for the MW 
Algorithm 

A clear-sky calibration database was generated for the LST_cci open algorithm inter-comparison round-
robin, in a similar way to the database described in Section 6.8 for the TIR but simulating SSM/I 
observations instead. This achieved the objective of evaluating algorithm performance both in the TIR and 
MW regions within a common inversion setup. However, for the final MW retrieval algorithm, a larger 
database already exists, based on real SSM/I observations for both cloudy and clear atmospheres, and it 
is preferred as it describes in a more comprehensive way the relationship between the LST and the SSM/I 
and SSMIS observations. 

The database used for the final retrieval algorithm is based on the inversions of SSM/I observations 

described in [RD-38]. Atmospheric and surface parameters were retrieved for clear and cloudy conditions 

with a relatively complex inversion setup. To constrain the inversions, a large range of ancillary 

observations were used, including cloud and surface parameters from the International Satellite Cloud 

and Climatology Project (ISCCP) [RD-46], and atmospheric information from the National Centre for 



 

Algorithm Theoretical Basis 
Document 

 
WP2 ς DEL-2.2 

Ref.:  LST-CCI-D2.2-ATBD 

Version: 1.1 

Date:  19-Sep-2019 

Page:  37 

 

© 2019 Consortium CCI LST 

Environmental Prediction (NCEP) meteorological analysis [RC]. This ancillary information was required 

because the original inversions of [RD-38] were first developed to estimate the atmospheric parameters 

over land, with caution being necessary given that the atmospheric signal is rather small as compared to 

the surface contribution. 

The retrievals also provided LST estimates under clear and cloudy conditions. They have been thoroughly 

evaluated [RD-47, RD-48, RD-49], and are the reference for the calibration of the simplified retrieval 

algorithm of the LST_cci MW product. As described in Section 5.2.1, the new retrieval algorithm only 

targets LST and removes the need of ancillary information, making it more robust than the original 

inversion algorithm regarding the objective of providing a seamless climate data record.  

The final database includes the global LST estimates, together with the corresponding SSM/I observations 

at the different frequencies, and monthly climatological emissivity sourced from TELSEM (see Section 

5.4.10). Four years (2000, 2003, 2005, and 2007) are included to provide sufficient land and atmospheric 

variability, with the pairs of LST and brightness temperatures quality-controlled to assure that only pairs 

where the difference between the observations and the simulated brightness temperatures for the given 

atmospheric and land state is within an acceptable noise, typically of the order of half of the instrumental 

noise.  The final database consists of ~4.5 million cases, which are divided into a validation database of 1 

million cases, while the remaining 3.5 million are sampled to provide a training database of 1 million cases 

equalized in LST and clear/cloudy occurrence. Both training and validation databases are further divided 

into sub-databases covering Antarctica and Greenland, and the remaining continental land, for the 

separate retrievals described in Section 5.2.1. 

5.4. Auxiliary Datasets for Microwave Retrievals  

The following section gives a description of the auxiliary datasets used for microwave retrieval algorithms 
utilised in LST_cci. This section also described how these auxiliary datasets are applied in each algorithm. 

5.4.1. Emissivity 

TELSEM 

TELSEM (a Tool to Estimate Land Surface Emissivities at Microwave frequencies) [RD-45, RD-38] provides 
a global monthly mean emissivity dataset. It is currently integrated to the Radiative Transfer for TOVS 
(RTTOV) forward model, but a general version that can be interfaced with other radiative transfer codes 
is also available. The dataset is based on SSM/I observations at 0.25° resolution from the period 1993-
2004, but observations from the Tropical Rainfall Measuring Mission (TRMM) and Advanced Microwave 
Sounder Unit-A (AMSU-A) for selected months in the same period are also used to provide interpolation 
routines capable to generate the emissivity at different frequencies and angles.  The emissivity data are 
produced here at frequencies of 19, 22, 37 and 85 Hz in both vertical and horizontal polarisations. These 
channels are used in the radiative transfer calculations of the MW calibration database and in the 
microwave LST retrievals. In the retrievals, they provide a reasonable guess of the surface emissivity, 
which helps to improve the accuracy of the LST estimates as demonstrated in the LST_cci open algorithm 
inter-comparison round-robin.   

The TELSEM dataset will be used in the microwave LST retrieval algorithm NNEA. 
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For more information on this dataset see: http://www.estellus.fr/index.php?static12/microwave-
emissivity. 

5.5. Uncertainty Model for Microwave Algorithms 

An initial assessment of the MW algorithm uncertainty is presented here. The calibration database for the 

MW algorithm is based on real SSM/I observed radiances and the corresponding LST estimates from an 

inversion of the previous observations, as described in Section 8.2, and it is also applicable to the SSMIS 

instrument. MW emissivities from climatology are also used as an input to the retrieval algorithm, 

together with the observed radiances. Given the peculiarities of this database, applying the uncertainty 

model described in Section 4.7 for the TIR algorithms to the MW LST estimates is not straightforward.  An 

initial assessment of uncertainty is presented here for the MW product of the LST_cci Cycle 1, which will 

be further revised in the framework of the E2UB for the subsequent production cycles. 

5.5.1. Theoretical Uncertainty 

Theoretical uncertainty is estimated by looking at the retrieval errors of the validation database. Retrieval 

error is defined as the difference of the database LST and the algorithm retrieved LST from the 

corresponding brightness temperatures.  For approximately 40(70)% of the database, the retrieval error 

is smaller than 1.0(2.0) K.  To characterize this error and provide an estimate of uncertainty, the standard 

deviation of the retrieval error for different retrieval conditions is calculated. Over the whole validation 

database, the standard deviation of the retrieval error is 2.2 K. 

In principle, given that the MW LST estimates come from a coefficient based retrieval algorithm, this 

uncertainty could be described as the retrieval ambiguity of the uncertainty model described in Section 

4.7 for the TIR retrievals. However, the peculiarities of the MW calibration database imply that the 

described uncertainty is also likely to incorporate other components, such as the random components 

associated to L1 channel noise and emissivity variability.  As the calibration database use real 

observations, the regression coefficients of the MW algorithm are calibrated with L1 radiances already 

containing instrumental noise. Therefore, the mapping to be approximated by the non-linear regression 

is already noisy regarding the radiances, and part of the retrieval ambiguity comes from this noise. A 

similar reasoning can be made concerning the emissivity.  The inversion uses climatological emissivity, not 

an estimation of the true emissivity at the observation acquisition, which certainly affects how accurately 

the mapping between radiances and the LST can be approximated when calibrating the retrieval 

algorithm. In that sense, we can also justify that the derived theoretical error also includes an uncertainty 

component related to the emissivity variability. Also, it should be noticed that the target LST of the 

calibration database already comes from an inversion, i.e., it is not an error-free LST. In that sense, the 

derived theoretical uncertainty has to be considered as a lower limit. Moreover, this uncertainty analysis 

excludes any systematic components, which can typically only be inferred by comparisons with other 

sources of LST. 

http://www.estellus.fr/index.php?static12/microwave-emissivity
http://www.estellus.fr/index.php?static12/microwave-emissivity


 

Algorithm Theoretical Basis 
Document 

 
WP2 ς DEL-2.2 

Ref.:  LST-CCI-D2.2-ATBD 

Version: 1.1 

Date:  19-Sep-2019 

Page:  39 

 

© 2019 Consortium CCI LST 

 

Figure 5: Retrieval uncertainty defined as the standard deviation of the difference of the database LST 

and the algorithm retrieved LST.  The standard deviation is calculated over the LST estimates binned for 

different ranges of LST, 37 GHz vertically polarized emissivity, cloud liquid water, and vegetation class 

(rain forest (RFO), ever- green forest (EFO), deciduous forest (DFO), evergreen woodlands (EWO), 

deciduous woodlands (DWO), agriculture (AGR), grasslands (GRA), tundra (TUN), shrublands (SHR), and 

deserts (DES)). The standard deviation (y-axis) is plotted for the AM (PM) overpasses as blue (red) 

arrows. The normalized distribution of the variable stratifying the retrievals (x-axis) is also plotted as a 

solid line (numbered axis not displayed). 

Figure 5 presents the retrieval uncertainty for different ranges of LST, emissivity, cloud liquid water 
content, and vegetation class. The retrieval uncertainty is larger for the warmer and colder LSTs.  Larger 
values are also found for the lowest emissivity values associated to some of the challenging inversions, 
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with the difficulties typically caused by varying emissivity conditions not well captured by the 
climatological values (e.g., snow-covered areas or humid surfaces).  Variations of the uncertainty with 
cloudiness are very small, showing the very small impact of cloud presence in the retrievals. Regarding 
vegetation conditions, the smallest averaged standard deviation happens for the rainforest.  This is 
reflecting the impact of emissivity in the retrievals, with rainforest representing quite stable surface 
conditions and the emissivity climatology likely constraining the inversion problem well.  
 

5.5.2. Retrieval variability 

The retrieval variability is defined as the standard deviation of the LST estimates from the 100 MLP 

retrievals at each swath position (see Section 5.2.1). Figure 6 presents the average variability for the same 

ranges and variables as in Figure 5. When plotted as function of the LST and 37 GHz vertically polarized 

emissivity, a larger variability is observed for the lower LST and emissivity, coinciding with the largest 

retrieval uncertainty previously shown in Figure 5. Cold LSTs are in many cases associated with snow-

covered areas, where the climatological emissivity applied in the retrieval can poorly represent the true 

conditions.  Low emissivity values are associated with some of the places where difficult inversions are 

expected, such as snow-covered areas, humid surfaces, or coastal regions. But the larger retrieval 

variability for the low emissivity values can also be related to the smaller population representing those 

conditions in the database, as shown by the distribution of the emissivity values also displayed in Figure 

6.  As described in Section 5.2.1, the calibration of the retrieval algorithm minimizes a global cost function, 

and the minimization is likely to be more driven by the most represented conditions in the calibration 

database.  Regarding the cloud liquid water content, the variability is close for clear and cloudy conditions, 

showing the negligible impact of cloud presence for most inversions. An exception is strong convection 

activity in the overlying atmosphere, where non-quantified scattering induced brightness temperature 

depressions can contaminate the retrievals as the inversion assumes that most of the microwave emission 

comes from the surface.  Concerning the variability for different vegetation types, they are comparable 

apart from the tundra, possibly reflecting the inversion difficulties for large parts of the year related to 

the snow/inundation conditions.  
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Figure 6: Retrieval variability defined as the standard deviation of the LST estimates from the 100 MLP 

inversions. The retrieval variability is calculated for LST estimates binned for the same conditions shown 

in Figure 5. See the text for more details.  

 

 

 

 

 

 

 










