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CClI Living Planet Fellowship Final Report [400112805/15/1-SBo]

Surface water and climate variability from a high-resolution GIEMS-
SAR merged product

Terrestrial surface water, identified as an Essential Climate Variable by the Global Climate Observing
System, is a key parameter of the global water and biogeochemical cycles and plays an important
role in the climate system and its variability. Changes in global surface water extent are closely
related to changes in the global carbon cycle (CO2 and methane emission). Meanwhile, the global
average maximum inundated area has significantly declined over the last decades, partly due to
population pressure (Prigent et al., 2012). However, the knowledge of the global distribution and
dynamics of surface water remains limited. Despite the advent of satellite remote sensing techniques
for hydrologic investigations over the last 20 years, frequent accurate high-resolution
characterization of the temporal and spatial variation of surface water is beyond the capabilities of
current satellite methods. Therefore, important science questions remain currently unanswered. For
instance, the part of the total interseasonal and interannual variation in terrestrial water storage that
is attributable to lakes is still unknown.

A Global Inundation Extent from Multi-Satellite (GIEMS) dataset of monthly inundation and surface
water dynamics at about 25 x 25 km? resolution has been produced by a multi-sensor analysis
covering 1993-2007 (Prigent et al. 2001). In spite of the high value of this dataset for hydrology and
climate studies (Prigent et al. 2001, 2007, 2012; Papa et al. 2010), its low-resolution limits the
observations to only 20% of the global inland surface water (small water bodies are not detected),
whereas it would be 80% with a 100 x 100 m? resolution (Downing et al., 2006).

Despite their lack of temporal coverage, many studies (e.g., Lewis and Henderson, 1998) have
successfully used Synthetic Aperture Radars (SAR) to map inundation and wetland vegetation with
high spatial resolution (Rosenqvist et al. 2000). One comprehensive study of flooding in the Amazon
basin for low-water (September-October 1995) and high-water (May-June 1996) conditions is that of
Hess et al. (2003), where wetland extent was mapped for the central Amazon region using L-band
SAR imagery acquired by the Japanese Earth Resources Satellite 1 (JERS-1). For a large wetland area
of the central Amazon region, dual-season radar mosaics were used to map inundation extent and
vegetation at about 90 m resolution. As described in detail in Hess et al. (2003), polygon-based
segmentation and clustering were used to delineate wetland extent with an accuracy of 95% along
with a pixel-based classifier to map wetland vegetation and flooding state based on backscattering
coefficients of two-season class combinations, producing the first high-resolution wetlands map for
the region. Similarly, Kuenzer et al. (2013a,b) extracted high-resolution (150 m) inundation maps
over the Mekong Delta using ENVISAT ASAR Wide Swath Mode data sets between 2007 and 2011.
Since the end of 2014, the ESA Sentinel-1 satellites produces C-band SAR data with a spatial
resolution of 5x20 m in Interferometric Wide Swath mode. One major drawback of mapping high-



resolution inundation maps from SAR data sets is their temporal coverage (for instance, ENVISAT
ASAR data are available since 2002 only), which highly limits hydrological studies that requires long
time series, especially in the context of climate change (e.g. trends or interannual variability
analyses).

At the time of the proposal writing, we expected to have enough Sentinel-1 SAR retrievals, but
despite our inquiries, this type of dataset (enough temporal and spatial coverage) is not yet available.
We therefore had to develop our own Sentinel-1 SAR retrieval (with the collaboration of Binh Pham
at the Paris Observatory), which was not the topic of this study. However, we think that this
additional work was positive for the overall study.

The main question of this project is: would it be possible to develop a SAR-based downscaling
methodology to derive high-resolution surface water extent from the existing GIEMS low-resolution
dataset? Since GIEMS has a global coverage, the ideal situation would be to develop a downscaling
technique general enough to work in all environments. However, each hydrological basin has its own
characteristics, such as its topography or space-time variability. The downscaling algorithm might
need to take into account these specificities and the availability of the a priori high spatial resolution
information for a particular basin. About 15 years of IR/VIS images from are now available at the
global scale and may be used as a reference to downscale the GIEMS product (Aires et al., 2014), but
the spatial resolution is much lower than with SAR data (250m vs 20m) and images are limited by
cloud cover. This of course limits the use of this type of data to clear sky scenes (in addition to low
vegetation). High-resolution datasets based on topography are another option to serve as a basis for
the GIEMS downscaling. Even though this method can provide good results (Fluet-Chouinard et al.,
2015), it may not well capture inundations in flat regions or regions affected by man. SAR experiment
over Amazon was also tested (Aires et al., 2013) but this study was limited to the use of the two
available states of inundation for Amazon (low and high inundation state). With the Sentinel-1 SAR
data, new approaches can be developed due to their temporal and spatial coverage. The present
project aims at developing methodologies to merge in an optimal way the GIEMS product with SAR
data sets in preparation for the Sentinel-1 SAR data exploitation.

In this project, it is proposed to merge the GIEMS product and SAR data in order to produce a global
dataset of monthly maps of surface water extent at the SAR spatial resolution. The methodology
would make it possible to produce high spatial resolution inundation maps, for the full GIEMS time
period (back to 1993 and up to present). In future work, the value of the merged product for
hydrology and climate purposes could be assessed by statistical and frequential analyses, at local to
regional scale. The temporal and spatial characteristics of the surface water extent could be
compared to climate and anthropogenic indicators. The GIEMS-SAR product could then possibly help
climate change mitigation related to water surfaces.

At this time, due to bandwidth data transmission limitations, the spatial coverage of Sentinel-1 SAR
observations has been limited to a few regions around the world. In particular, the Europe region has
been the primary focus and a large amount of observations are now available over this region. It is
also a densely populated region where inundations have a high financial cost. For these reasons, the
methodology developed in this study was applied and tested over a part of the Danube Basin,
namely the area surrounding Bratislava and Budapest (Fig. 1). This region is of primary importance in
hydrology because of frequent floods, as for example in 2013 when a major flood caused very large
material and human damages.



Fig. 1. Region of interest in this study. The two red patches represent the surface extent of Sentinel-1
observations (relative orbit 73, slice 11 and 12). The blue rectangle represents the 5°x5° HydroSHEDS
tile. The 0.25°x0.25° grid of the GIEMS product is represented in blue in the zoom inset.

High resolution inundation maps, derived from Sentinel-1 SAR observations, have been processed
and used to set up a downscaling method that has been applied on the GIEMS product over the
whole time period. Two methodologies are proposed that rely on the construction of a "floodability"
index defined for each high-resolution pixel as the probability of being inundated. The first method
uses different topographic indicators (such as elevation, slopes, distances to the main rivers), and has
the advantage of being easily extendable to the global scale. The second method, which is expected
to be more accurate, only uses high resolution inundation maps but requires several images of the
same region at different hydrological states. Both methods have been tested over a small region of
the Danube Basin (Fig. 1). The topography-based method has been extended to the global scale.

The main objective of the project is to provide methodologies to downscale the GIEMS product
(about 25x25 km?2 resolution). The GIEMS product consists in monthly inundation maps over the
1993-2007 period - an extension to the recent period is under investigation. More precisely, for each
month and each low resolution pixel, GIEMS gives the fraction of the pixel area that is flooded. The




basic idea of the downscaling procedure consists in distributing the flooded area inside the low
resolution (LR) pixel among high resolution (HR) pixels. To do so, a floodability index is first derived,
which represents the probability of each HR pixel to be inundated. The floodability index is
essentially used to create a hierarchy among the HR pixels for the allocation of the GIEMS flooded
area. For instance, if a LR pixel is 30 % inundated, the first 30 % of the HR pixels (according to the
floodability index) will be inundated. Assuming that the floodability is constant in time (i.e. no major
changes in the floodplain geomorphology), the floodability index can be used over the whole GIEMS
period (1993-2007), even though it is based on more recent observations (such as Sentinel-1 SAR
data).

Two main products are used for the downscaling: topographic data from the HydroSHEDS database
(SRTM SAR derived) and Sentinel-1 SAR images. The HydroSHEDS database is provided at different
spatial resolutions, the highest being 3 arcsec (i.e. about 90 m at the equator), which approximately
corresponds to the level-1 GRD medium resolution of S1 SAR images. The HydroSHEDS database is
organized as 5° latitude - 5° longitude tiles (36 millions of pixels) at the global scale. Considering the
size of high resolution global datasets, the same structure and resolution will be used to downscale
the GIEMS product.

As stated previously, two methods are proposed to derive the floodability index. The first one is
based on topographic characteristics and has the advantage of being easily applicable at the global
scale. The second one is based on inundation observations and is then undoubtedly more precise but
it also requires multiple observations of the same region.and cannot be easily applied at the global
scale due to data availability. In the following, both methods are explained in details.

The first method to derive the floodability index relies on the assumption that the flood dynamics is
mainly driven by topographic characteristics, such as slope or distance to rivers (Fluet-Chouinard et
al., 2015). The HydroSHEDS database has been used to derive a panel of different topographic indices
as listed below. Then a neural network algorithm has been set up in order to extract the most
relevant indices and compute the floodability index.

To derive topographic indices, we considered the HydroSHEDS dataset (Hydrological data and maps
based on SHuttle Elevation Derivatives at multiple Scales), which is widely used in the hydrology
community. HydroSHEDS provides hydrological information in a coherent format at the global scale
(Lehner et al., 2006), including elevation, drainage network, flow direction and accumulation. This
database is derived from the Shuttle Radar Topography Mission (SRTM) at a 3" resolution (90 m).

It also provides a corrected DEM, called conditioned DEM, based on hydrological constraints (void-
filling and river network consistency). Also, mean river discharge data provided by Bernard Lehner
have been used to define rivers and their size. The corrected DEM and the drainage directions have
been used to derive the following topographic indices:

- drainage network distance to river: this is the distance (in number of pixels) following the drainage
network to the closest river;

- straight line distance to river: this is the distance (in metres) to the closest river;



- elevation from river: this the elevation of the pixel with respect to the closest river;
- slope: this is the slope (in m/m) along the drainage direction.

For the first three indices, different discharge thresholds have been used to define small, medium
and large rivers: 500, 10 000 and 100 000 m3/s. Consequently, a panel of 11 topographic indices
(including slope and mean discharge) has been computed for each HR pixel of the globe.

In order to find the most relevant topographic indices and their relationship with inundation spatial
structures, a neural network approach has been set up. The idea is to find statistical relationships
between the different topographic indices and flooded pixels. The method then requires a reference
inundation map. A Sentinel-1 SAR-derived inundation map is a good candidate but it would require a
sample of Sentinel-1 SAR inundation retrievals all around the world to represent all types of
inundations states, which is not available yet. Instead, we used the Global Lakes and Wetlands
Database (GLWD, Lehner and D4ll, 2004) that combines a variety of existing global lake and wetland
maps into one consistent coverage. GLWD represents a comprehensive dataset of global surface
water area, including small and large lakes, reservoirs, smaller water bodies, rivers, and a good
representation of the maximum global wetland extent. It is considered to be the best available water
mask of its kind, see Nakaegawa (2012). The level 3 GLWD dataset is provided at the 30 arcsec
resolution and it has first been downscaled to the 3 arcsec resolution for compatibilities with the
HydroSHEDS data. It should be noted that as soon as SAR retrievals from Sentinel-1 will be made
available at a larger scale, GLWD database could be replaced by these new estimates to develop a
better neural network SAR retrieval. The LandCover_cci Water Bodies product could also have been
an interesting alternative. It is derived from the ENVISAT-ASAR dataset and represents permanent
open water bodies at a 300 m resolution. Since this dataset is based on SAR retrievals, it has been
decided not to use it in order to prevent any redundancy between the topography- and SAR-based
methods and keep them as independent as possible. Nevertheless, the use of SAR-based water maps
as a reference for the topography-based floodability index is seen as a perspective of coupling both
methods.

The neural network takes topographic indices as inputs and provides floodability indices as outputs.
To train the neural network, a random sample of pixels is first created. Worldwide pixels are selected
randomly, but, given that the large majority of pixels are not flooded, we paid careful attention to
include 50 % of flooded pixels. Several tests have been conducted including different sets of
topographic indices. More details of the derivation of topography-based floodability indices and the
downscaling algorithm can be found in Miolane et al. (2016, to be submitted) and will not be
reported here. Namely, the authors present a sensitivity analysis of the floodability index to the
different topographic indices, as well as a smoothing procedure between GIEMS cells. The
downscaling method is applied on the GIEMS product at the global scale over the whole time period
(1993-2007) and evaluated over the Amazon Basin and the Niger Inner Delta. This is an extension of
the work performed by Fluet-Chouinard et al. (2015).

Again, this approach could be improved if SAR reference inundation maps were available at the
global scale. Several zones covering different topographic and hydro-climatic conditions should be
available in order to create a reliable sample. This option is seen as a perspective of the current work
that will be possible when the SAR community provides an operational SAR inundation estimates.



The second method to derive the floodability index is based on satellite observations only. More
specifically, several inundation maps at high resolution are used to define an inundation frequency
for each HR pixel. This method is expected to be more accurate if the original HR dataset is of enough
quality because it does not rely on topographic indices only; however it is sensitive to problems in
satellite measurements (presence of vegetation or clouds, atmospheric corrections, etc.).
Furthermore, it requires at least a whole season of observations with minimum and maximum flood
extents, and ideally several years of observations to provide reliable seasonal statistics. A practical
difficulty of this method is that no high resolution dataset of flood extent dynamics still exists at the
global scale. Indeed, despite recent studies showing the potential of satellite observations to derive
inundation maps over specific regions, the processing methodologies cannot be easily extended at
the global scale.

In this project, a portion of the Danube Basin has been selected to study the efficiency of the
downscaling method based on Sentinel-1 SAR images (Fig. 1). SAR images from Sentinel-1 are
available over this region since October 2014 with a 12-days repetitivity (6-days when Sentinel-1B
will be available). Nevertheless, deriving inundation maps from SAR backscatter maps is not
straightforward and an important part of this work was dedicated to that, as detailed in the next
section.

Inundation maps derived from Sentinel-1 SAR observations are then used to compute the floodability
index (aé the inundation frequency of each HR pixel). Lastly,' the same downscaling méthodology as
for the topography-based floodability index (see above and Miolane et al., 2016) is applied on the
GIEMS product over the study zone and for the whole time period (1993-2007).

This section describes the methodology to extract water maps from Sentinel-1 SAR observations.
Sentinel-1 SAR observations consist in backscatter coefficients given in two polarizations: VH and VV.
The backscatter coefficient is usually a good indicator for detecting water since it shows very low
values over water pixels. One of the main advantages of using SAR observations to detect water is
that observations are available day and night and whatever the meteorological conditions (not
sensitive to clouds). Nevertheless, discriminating water from land is not straightforward and a simple
threshold value does generally not guarantee accurate water detection. The idea here is to use
Landsat-8 imagery within a neural network approach to transform Sentinel-1 observations into water
maps. Cloud free Landsat-8 images are first gathered, with dates corresponding to available Sentinel-
1 observations (+ or — 7 days). These images are used as a reference to train a neural network over
Sentinel-1 data. This neural network is then applied on all available Sentinel-1 observations.

Sentinel-1 data are provided by ESA. Level -1 data are freely available on the Sentinels Scientific Data
HUB (https://scihub.copernicus.eu/). Here, Interferometric Wide swath (IW) mode is used, with a

250 km swath at 5 m by 20 m spatial resolution and a 12-day repeat cycle at Equator (one satellite).



Level-1 Ground Range Detected (GRD) data with relative orbit 73 and slice 11 and 12 were
downloaded for the period October 2014 to February 2016, representing 60 images for about 66 GB.

All these images were first pre-processed, including calibration, speckle filtering and terrain
correction. These steps are performed using the ESA Sentinel tool called SNAP. The calibration
consists in converting digital numbers (integers) stored in the image files into backscatter intensity
(Sigma_0) in both dual polarisation (VH and VV). The speckle filtering is used to remove the speckle
noise. It basically consists in an averaging window, but more sophisticated filters are available. For
instance, the “refined Lee” filter uses the variance around a pixel and is preferred to preserve edge
shapes (such as roads, rivers, etc.). The latter was used in this study with an edge threshold of 5000.
Finally, the terrain correction is used to correct distortions due to geometry and terrain elevation. By
default, the SRTM at 3sec resolution is used as the reference DEM. After the terrain correction step,
the final image is projected on the geographic reference WGS84 (latitude-longitude) and upscaled to
the HydroSHEDS resolution. Note that the upscaling to the HydroSHEDS resolution is not necessary
and was done here for comparisons between the two methods (topography- and SAR-based
floodability indices). A higher resolution could have been chosen, such as the resolution of Landsat-8
images used as reference inundation maps.

Landsat-8 provides images in the visible and infrared bands at a spatial resolution of about 30 m,
which is of particular interest to compute the Normalized Difference Vegetation Index (NDVI) often
used efficiently to discriminate water from land. With the recent launch of Sentinel-2 (June 2015),
higher resolution images are now available to compute the NDVI (up to 10m). Sentinel-2 data were
not used in this study because the overlapping period with Sentinel-1 was too short.

Landsat-8 data are freely available at different places. Here Landsat-8 scenes were ordered from the
USGS web site (httn://espa.cr.usgs.gov/) where high level products (such as surface reflectance or
NDVI) are proposed, as well as reprojection and resampling processes. Bands 4 and 5 are required to
compute the NDVI. The data from the original product may be used to compute (quite easily) the Top
of Atmosphere (TOA) reflectance. Surface reflectance can be obtained after performing an
atmospheric correction. Even though using TOA reflectance can satisfactorily discriminate water
from land (see e.g. Parente, 2013), using surface reflectance is more rigorous, all the more so as it is
provided by USGS.

Cloud and snow pixels have to be filtered from the Landsat-8 image. A quality assessment (QA) file is
provided along with the original images, including cloud and snow confidence flags. Another option is
to use the cfmask file from USGS, which is proposed along with the surface reflectance bands and
NDVI. USGS applied a specific algorithm to detect clouds and snow (Zhu and Woodcock, 2012). There
are some noticeable differences between both cloud masks (from the QA file and cfmask), as shown
in the following figure:
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Fig. 2. Cloud and snow cover from Landsat-8 with two different algorithms.
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At this stage, there are three options to map water from Landsat-8 images. The first one is to
compute TOA NDVI and classify water pixels where NDVI < 0 and land pixels where NDVI > 0. The
second option consists in using surface reflectance instead of TOA. The third option is to directly use
the water classification from the cfmask file. In this file, a water test is used to improve cloud
detection (Zhu and Woodcock, 2012). This test is based on both NDVI and Band 4 (red):

Water Test = (NDVI < 0.01 and Band 4 <0.11)or (NDVI < 0.1 and Band 4 <0.05).

From Fig. 3, it seems that the water test done in the cfmask algorithm works better than the two
others. Since this file is already generated by USGS, at different possible resolution, and that it also
includes cloud and snow flags, it would be the most convenient way to extract water maps from L8
images.
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Fig. 3. Water classification from Landsat-8
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In order to train the neural network to extract water maps from Sentinel-1 data, Landsat-8 water
maps are used and must be resampled at the same spatial resolution. Since the final resolution is the
one of HydroSHEDS (3arcsec), both Landsat-8 and Sentinel-1 have been resampled at this resolution.
Several upscaling algorithms may be tested, including, e.g., nearest neighbour, window average or 5
percentile. Only the first option is explored here.

The first step is to extract pixels available in both Sentinel-1 and Landsat-8 images. Then Sentinel-1
data are converted into decibel values (itis better to convert to dB after any proceésing so that
resampling is applied on real values). A sample of pixels is chosen randomly among the available
pixels. Among all the pixels within an image, a very small percentage are flooded, most of them being
land. In order to improve the efficiency of the neural network training, 25 % of the sample gathers
water pixels and 75 % gathers land pixels. Different sample sizes have been tested, and the optimal
value was 100,000 pixels which is the size chosen in the following tests. The sample pixels are
extracted from 5 Landsat-8 and Sentinel-1 images with close dates (+ or — 7 days, see Fig. 4).

Dates of Landsat 8 and Sentinel 1 observations
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Fig. 4. Dates of Landsat-8 and Sentinel-1 images used for the classification of water pixels.

The neural network is used to transform the backscatter coefficients from Sentinel-1 into values
between 0 and 1 that can be interpreted as the probability of each pixel to be inundated (kind of
floodability index). The inputs of the neural network are the backscatter coefficients in both dual-
polarisation (SigmaO_VH and Sigma0O_VV). The targets are the water flag from Landsat-8 images and
the output are values ranging between 0 and 1, marked as water if greater than 0.5 and as land if
lower than 0.5. As shown on Fig. 5, the confusion matrix shows overall good results with a high global
accuracy (more than 90 %).
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Fig. 5. Confusion matrix for the Sentinel-1 training.

It could be possible to improve this results by including other potentially relevant values into the
training, such as the minimum, maximum, temporal average and standard deviation of the
backscatter coefficient, as well as the spatial standard deviation (over a 9-pixels size window). The
first four values are computed using all the available Sentinel-1 observations, whereas the spatial
standard deviation is computed for each image (each date) independently. All the derived values are
computed for both dual polarisations, so that 10 values are available for each pixel. All the possible
combinations of different values have been tested and results are reported in Table 1. For each
combination, both polarisation (VH and VV) are considered.




1 I— 3 : : SO 5
Sigma_0 spatial var (9)  minimum maximum temporal std

target=0 | target=1 | output=0 | output=1| overall

1 982401 727276 915301 932319  91.8620

T g | 966105 676520 899596  86.9335  89.3709
o 3 | 992267 776686  93.0214  97.0999  93.8370
4 | 994559 707766  90.9865 977707  92.2248
o 5 | 972079 654990 894225 887338  89.2954
12 | 9see676 758872 924675 949963  92.9725
1-3 1 993710 776390 930223 97.6273  93.9378
14 993693 749166 921570  97.5638  93.2038
1-5 991378 747244 921669  96.6543  93.0343

2-3 | 993719 792719 934988  97.6784  94.3468

2-4 991474 763661 925613 967946  93.4034

25 977584 751588 921909 917878  92.1084

T g 993944 783137 931481 977577  94.0792
T35 | 993431 777330  93.0478 975277 93.9404
45 | 994082 787571 932796  97.8197  94.2013

Je3:3 991699  78.9915 934041  96.9439  94.1252
1-2-4 | 991740 772833 928310  96.9272  93.6545

1-2-5 992311  77.9266  93.0968  97.1252  93.9048

" 13-4 | 993604 783849 931668  97.6371 . 94.0717
135 | 993990  77.8498  93.0853  97.7365  94.0116
T 145 | 994292 786236 932416  97.8920  94.1833
2-3-4 993788  79.9016  93.6168  97.7461  94.4679

2-3-5 993946  79.2055 934807  97.7585  94.3472
245 | 994575  79.8959  93.6199  98.0259  94.5253
245 | 994779 788514 933118  98.0738  94.2771
"""""" 1-2-3-4 994194 797406 935714  97.8850  94.4576
1235 | 994375 793151 935154  97.9170  94.4068
1-2-4-5 | 992707 795136 934950  97.3515  94.2892
1345 993372 786386 932401 975612  94.1183
2-3-4-5 994386  80.0274 936578  97.9616  94.5443
©1-2-3-4-5 | 993791  80.0744 936682  97.7519 945117

Table 1. Performances of the different combinations for the neural network training (target is
Landsat-8, output is Sentinel-1).

First, it is clear that the minimum and maximum backscatter values are the two indices with the best
performances. Then, increasing the number of indices generally improves the performances, with an
overall accuracy reaching 94 %. Nevertheless, results could be somewhat different with a longer time
series or in different environment (hydroclimatic conditions). In the following, we preferred to use
the five indices.

The neural network being trained, it is possible to apply it on all the available Sentinel-1
observations. Fig. 6 shows the comparison between Landsat-8 water mask (20" March 2015) and
Sentinel-1 water probability (27" March 2015), i.e. output of the neural network, over two different
regions.
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Fig. 6. Landsat-8 water mask and Sentinel-1 water probability (25" July 2015).

The Sentinel-1 water detection algorithm clearly detects the main water structures, such as main
rivers and lakes as well as small water bodies. Besides, Sentinel-1 also detected small structures such
as fields, with a non negligible water probability. This means that such fields would be potentially
flooded during the downscaling process if enough water is available within the corresponding low-
resolution GIEMS pixel.

Fig. 7 shows the comparison of the floodability index computed from Sentinel-1 SAR data or
topography indices over the considered region and two different small zones. As shown in the left
column, the contrast between always flooded pixels (rivers, lakes) and the other ones is very high. To
enhance the colours and the spatial structures of the floodability index, a CDF (Cumulative
Distribution Function) matching method has been applied, with the topography-based floodability
index as a reference (see Fig. 8). The CDF matching has no impact on the downscaling procedure
since the pixel hierarchy (in terms of floodability index values), that is used in the downscaling
process, is not changed.




It is clear that the main water bodies such as large rivers and lakes are well represented by the
floodability index in both cases (values close to 1). Small details such as the braided part in the
middle zone of the third line seem to be better represented by the SAR method, as well as some
flooding zone (see e.g. the eastern part of the river in the middle line, or the north-western part in
the third line). The area surrounding the lake (middle line in Fig. 7) also shows high floodability values
with the SAR method, meaning that it would be flooded during rainy events. The topography method
shows the same behaviour, which corresponds to increasing lake extent due to topography that
happens when the lake level increases. In the topography method regions with the highest
floodability indices are located near permanent water bodies (rivers and lakes). The floodability
spatial structure for the SAR method is very different, showing high floodability over fields rather
than near rivers (see also Fig. 9). For quite flat regions, the topography method cannot attribute high
priority to fields and tends to prioritize river banks. Since the SAR method is based on observations, it
is expected to be more reliable.

On the other hand, some rivers that are clearly visible in the topography method do not appear as
probable flooded pixels in the SAR method. The most probable reason is that these are small rivers
that have been enhanced by the topography-based procedure and minimized by the SAR-based
method because of the Sentinel-1 upscaling step, as shown on Fig. 10. It should also be noted that
potentially inundated pixels might not be indicated by the SAR floodability index because they have
not been inundated during the period used to define the SAR floodability. For instance, a large and
extreme inundation pattern occurring only one time per decade would not be represented in the SAR
time record used to define the floodability index, but it might be present in the topography index.

Finally, Fig. 8 shows a quite binary behaviour of the CDF of the SAR-based floodability index. This
means that wetted pixels were inundated in almost all SAR images, or in other words, that the
temporal variability of the flood extent was quite low during the observation time span. Indeed, the
year 2015 was quite dry in most of the European basins. This is a limitation of the SAR method. Its
performances would increase with a longer time series, especially if images capture various
inundation states.
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Fig. 10. While small rivers are enhanced by the topography method (left), they are not well captured
by the SAR method (middle), even though they are quite visible in the 10 m high resolution Sentinel-
1 image (right).

5 Downscaling of the GIEMS product

The method to downscale the GIEMS product from the floodability index is described in section 3 and
more details can be found in Miolane et al. (2016, to be submitted). The GIEMS product has been
downscaled at the global scale and over the whole time span (1993-2007) using the topography
method. On the other hand, the SAR method has been used to downscale the GIEMS product over
1993-2007 for the considered region in the Danube basin. Both methods are compared in the
following sections.
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Fig. 11 and Fig. 12 show the comparison between the topography- and the SAR-based methods at
different time steps and over two sub-regions. The original low-resolution GIEMS product is
represented as blue shading background (with a different colour scale). Three time steps are
represented, the first one corresponding to the minimum flood extent, the third one to the
maximum and the second one to an intermediate situation.




Differences between both methods only rely on differences between floodability indices.
Consequently, all the similarities and differences raised in the previous section are also visible in the
downscaled product. Namely, as shown on the low flow time step (first line), the main water bodies
(rivers and lakes) are well represented. The GIEMS-SAR product seems to be finer in the details but
some small rivers are missing. Instead, small water bodies and flooded river banks are present in the
GIEMS-SAR product. Besides, the topography method shows some artefacts in lakes because the
HydroSHEDS database represents the bathymetry instead of a flat region over large lakes (based on
the SRTM Digital Elevation Model).

When the water extent increases, flooded areas are concentrated near the rivers with the
topography method, whereas the SAR method tends to inundate small bodies such as fields and
small lakes and to slightly increase the river width. This is due to the high importance of the distance
to river information in the floodability index with the topography method. In Fig. 12, the lake extent
exaggeratedly increases at very high flow with the topography method, as well as river width. It is
more likely that fields and small water bodies become inundated in such a situation. No images were
available at this resolution and time steps, so that validation is quite difficult, all the more so as no
major flood event occurred over this region during the Sentinel-1 time span (from October 2014).
Nevertheless, the SAR method seems to be more realistic. Advantages and drawbacks of both
methods are detailed in the Discussion section.

Fig. 13 and Fig. 14 show the number of flooded months and the inundation variability (in terms of
standard deviation) over the whole time period (180 months) for both methods. As stated previously,
all the inundated areas are located near rivers with the topography method, then showing a high
temporal variability. On the contrary, with the SAR method, only a few pixels on the river sides and
around the lake show high temporal variability. The flooded zones are more diffuse and mainly
represent fields and small lakes. One may also notice that the variability is quite high in towns, as in
Bratislava (North-East of the lake in the second line). Even though major floods occurred during this
time period in Bratislava (e.g. in August 2002), the high value of the standard deviation may be partly
due to misclassification errors during the Sentinel-1 neural network training. To overcome this issue,
it could be possible to use ancillary data (such as land cover classification) to force urban zones to be
set to dry pixels. Overall, the GIEMS-SAR downscaled product shows a satisfactorily temporal and
spatial behaviour, and seems to improve the topography-based product. Note that the inundation
variability within the lake with the topography method is due to non uniform lake topography in
HydroSHEDS (which is necessary in hydrological applications to ensure flow routing throughout the
lake).
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Fig. 13. Number of flooded month per pixel over 1993-2007 for the topography- and SAR-based
methods. Images joins in the upper right figure appeared due to border effects during the resampling
process.
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Fig. 14. Inundation variability (standard deviation) over 1993-2007 for the topography- and SAR-
based methods.

This project focused on the development of methodologies to downscale the GIEMS product. GIEMS
is a global scale dataset based on multi-satellite observations and consists in monthly maps of water
surface extent at the 0.25 degree spatial resolution. Downscaling GIEMS to resolutions of about 100
m would allow the observation of the dynamics of about 80 % of surface water around the world
over the last two decades. Such a dataset would be very valuable for a wide range of studies, from
local hydrology (high-resolution) to climate (long time series) where surface water is a key
component. Namely, the surface water component in the water and biochemical cycles is one of the
most directly impacted by human activities, and characterising it globally, at high resolution and over
a long time period is essential to better understand the causes and consequences of Climate Change.




Two methodologies have been proposed, both based on the computation of a floodability index
representing the probability of each high-resolution (HR) pixel inside a low-resolution (LR, the GIEMS
resolution) pixel to be flooded. The first method relies on a panel of topography indices (elevation,
slope, distance to river, etc.) computed from the HydroSHEDS database. Its main advantage is that it
can more easily be extended at the global scale. The second method is based on satellite SAR
observations from the Sentinel-1 mission. Contrarily to the topography method, it is based on
observed inundation maps and consequently accounts for flooding that is no only topography-
related (such as anthropogenic structures or irrigation). The major drawback of this method is the
requirement of long time series of HR observation-based water maps. Despite the increasing number
of satellite observations, deriving HR water maps is not straightforward at the global scale and
requires a large amount of resources (storage and CPU) and reliable retrieval algorithms effective on
diverse environments. As a consequence, great efforts are still needed to perform a global scale
downscaling with this method. As stated thereafter, combining both methods could represent an
interesting alternative.

The topography-based method has been applied at the global scale to derive the floodability index
for each land pixel at the 90 m spatial resolution (resolution of HydroSHEDS). In this project, for the
SAR-based method, a first step has been to develop algorithms to derive water maps from
backscatter SAR observations. A Neural Network approach has been defined, using Landsat-8 images
as a reference. One may note that Landsat-8 images could have been used directly to derive the
floodability index, but such observations are highly sensitive to meteorological conditions (clouds),
and it is almost impossible to get a complete hydrological season. The SAR Neural Network retrieval
is able to extend temporally and spatially the clear sky inundations estimates of Landsat, even for
cloudy scenes. Different options have been tested for the neural network training, including the
consideration of different indices derived from the backscatter coefficient (extreme values, spatial
and temporal standard deviation) or the percentage of flooded pixels in the training sample and the
upscaling resampling method. When compared to Landsat-8 water maps, the method provided good
results, with an overall accuracy higher than 90 %. The floodability index has then been computed
using the output of the neural network applied at each time step and for each pixel.

Different comparisons between the topography- and the SAR-based methods have been performed,
in terms of floodability index and spatio-temporal of the downscaled GIEMS product. Both methods
show overall good results, with a satisfactory detection of permanent water bodies. This result is
quite obvious for the topography method since the neural network used to set up the floodability
index uses the Global Lakes and Wetland Database (GLWD) as a reference. As a consequence, the
distance to river topographic index has a large weight in the neural network and pixels near the main
rivers show high floodability indices. For the SAR-based method, the good detection of main water
bodies is representative of the good performance of the water map extraction from Sentinel-1
observations. It has to be noticed that some rivers detected by the topography method (actually
present in GLWD) are not detected by the methodology used with Sentinel-1. Reasons could be the
small size of these rivers or misclassification errors. To confirm the former, tests at a higher spatial
resolution (e.g., the original Sentinel-1 resolution) could be performed, for instance at the Landsat-8
resolution, or even higher when enough Sentinel-2 images will be available.

Another consequence to the use of GLWD as a reference for the topography method (and the large
weight of the distance to river topographic index) is that the highest floodability values, after
permanent bodies themselves, are located near the rivers and the lakes, while the plains show very
low values. Hence, with the topography method, floods mainly occur near the river, leading to



unrealistic river widths or lake surface extents. On the contrary, the SAR method, which is only based
on observations, shows a more diffuse spatial pattern, with narrow flooded areas in the rivers sides
and a lot of small water bodies within the plains, corresponding to flooded fields and small lakes. The
SAR-based method seems to provide more realistic spatial and temporal characteristics of the flood
dynamics, which should be validated in the future with independent observations.

To summarize, the topography-based method can be easily applied at the global scale, whereas the
SAR-based method requires a large amount of data and reliable retrieval algorithms. Moreover, the
SAR method is limited by the available observations (the length of the time series and the observed
variability); potentially flooded pixels may never be inundated if they were not inundated in any of
the SAR observations. As a perspective, other SAR-based observations could be used to extend the
time period (such as PALSAR, PALSAR-2, ERS-1 and 2 or ASAR). On the contrary, the topography
method creates a complete hierarchy of all the pixels, which enables any pixel to be inundated. On
the other hand, the topography method is limited to topographic indicators, while the SAR method is
based on observation and can then account for isolated small water bodies and zones affected by
human activity that would not be seen by the topography method. Potential combinations of both
methods are quickly explored in the next section.

As potential future work, some technical analyses should be performed:in order to improve the -
results or assess the impact of some aspects of the methodology. Namely, the impact of the speckle
noise inherent to SAR observations is not clearly assessed and may be responsible for
misclassifications errors in the development of water maps from Sentinel-1 (e.g. in urban regions).
This would directly impact the floodability index and therefore the downscaled results. Larger time
series would dampen the importance of the speckle errors. Different speckle filters could be tested,
including more sophisticated ones such as multitemporal filters.

Also, a comprehensive analysis of the impact of the spatial resolution is recommended. In this work,
the HydroSHEDS database was used to develop the topography-based floodability index and its
spatial resolution (3 arcsec, or about 90 m at the Equator) was chosen for the final product.
Nevertheless, different products with different spatial resolution were used as well: the GLWD
database, Landsat-8 images and of course Sentinel-1 observations. Each dataset has been resampled
at the final resolution. Even though different resampling techniques have been tested, other
techniques could provide significant improvements. Also the final resolution in this study is not the
original resolution of Sentinel-1, and potential of this highest resolution on the downscaling
performance could be explored. Besides, the time period in this study was quite short (about 1.5
years), limiting the number of observed flood events. The performances of the GIEMS downscaling
highly depend on the variability (in space and time) of the inundated pixels. Hence a comprehensive
sensitivity analysis of the length of the study period could be performed.

Another perspective is the development of a seasonal floodability index. The idea is to use different
indices depending on the season, considering that the inundation dynamics can vary during the year.
To do so, several years of SAR observations are recommended in order to set up 3-monthly seasonal
floodability indices. The potential improvement could be assessed by simple comparison with a single
floodability index. Besides, the exploration of combinations of topography and SAR methods could be
quite valuable. Indeed, as previously explained, the topography method can be extended at the
global scale quite easily since topographic indices are available. On the other hand, the SAR method



is based on observations and has the great advantage of capturing flood dynamics independent to
topography (i.e., anthropogenic structures or irrigation). For instance, linear combinations of SAR-
derived and topography-based floodability indices could be envisaged, potentially with different
weights depending on the environment (there are some techniques to optimally weight two sources
of information on a same parameter, this is used for instance in the ESA WACMOS soil moisture
dataset to mix the passive and active microwave retrieval of soil moisture). Also, water maps from
SAR observations could be included into the Neural Network training of the topography -based
floodability index, as well as other indicators to better account for isolated small water bodies or the
type of environment (e.g., land use, land cover, soil characteristics, etc.).

Finally, the application of the SAR method should be explored over different hydro-climatic regions
(e.g., Amazon, Niger, Mekong). The impact of the presence or not of extreme events in the SAR
sampling is also a way of potential improvements. To demonstrate the value of the merged GIEMS-
SAR product for hydrological studies, it is proposed to analyse in more details the time series over
different test cases. In particular, seasonal cycles, trends and interannual variability could be
extracted at the local and regional scales. To assess the hydrological consistency of the merged
product, results could be compared to other datasets, such as other inundation estimates (e.g. from
LandCover_cci or MODIS), soil moisture (e.g. from SoilMoisture_cci or the WACMOS project), in situ
water level or discharge data or terrestrial water storage from the GRACE spatial gravimetry mission
(for basin scale water mass variability).

The present work helped us to better understand the potential of such downscaling approaches,
their advantages and drawbacks, and all of the potential improvements make them a very promising
way to develop a long time series (several decades) of high resolution inundation maps by combining
all the available information (including IR/VIS imagery, SAR, low-resolution passive/active microwave,
topography, etc.).

As stated previously, the merged GIEMS-SAR product will be highly valuable for climate studies as
well as for analyses of anthropogenic impacts. Following similar methodologies as those developed
by Munier et al. (2012) on the relationship between the global and regional runoff and climate
variability, statistical and frequential comparisons between the surface water extent variability and a
panel of climate indices related to the main large scale phenomena (such as ENSO or the Atlantic
Multidecadal Oscillation) could be performed. As for most parts of the world, the hydro-climatic
conditions are strongly related to such phenomena, it is expected that surface water extent shows
similar relationships, even though such a result is still not clearly identified for the smallest water
bodies. This would provide a necessary first step to quantify the contribution of small water bodies to
the climate variability, as well as feedback effects.

In addition, the potential link between surface water extent and anthropogenic factors and
population pressure (e.g. land use change, agriculture, urbanisation) could be explored. Such analysis
could follow the study by Prigent et al. (2012) that related an overall decline in global average
maximum inundated area to large increases in population over the last two decades, suggesting a
global scale effect of human activities on continental surface freshwater. The high-resolution merged
product should partly confirm these results if applied on test cases that are either highly impacted by
anthropogenic factors (e.g. Mekong or Mississippi basins) or driven by natural conditions (e.g.
Amazon or Congo basins). As it could be done with climate indices, the comparison with different



indices related to human activities could be performed, such as population growth, water
management §trétegies or land use chahges. The high-resolution inundation estimates could also be
used to compute water volume changes (Frappart et al., 2012) and river discharge estimates; the
impact of spatial resolution (from GIEMS to merge GIEMS-SAR) could be assessed, which should
provide significant analyses of the potential benefits that could be expected from Sentinel-1 data.
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