Cloud CCI Uncertainty

Caroline Poulsen, Gareth Thomas, Martin Stengel, Rainer Hollmann, Oliver Sus and Ralf Bennartz

Cloud CCI Uncertainty

- All cloud CCI algorithms use Optimal Estimation so can propagate uncertainty to pixel level.
- Significant sources of uncertainty
 - Many are random
 - Many are systematic
- Not all are currently addressed
 - Currently addressed: measurement noise, surface, some forward model uncertainty
- Lots of work has gone on to minimise potential sources on uncertainty

Sources of uncertainty

- Calibration
 - Particularly of the visible channels
 - Uncertainty, offset, drift, noise
- Assumptions on the cloud vertical structure
 - Multi layer cloud, mixed phase cloud, view angle dependence
- Assumptions associated with an inhomogeneous cloud field
 - Shadowing, edge effects, sub pixel cloud
- Misidentification of aerosol and cloud

Uncertainty in cloud retrievals

- Sensitivity to modelled surface reflectivity
 - Other auxiliary data sets
- Cloud optical property models
 - Small sensitivity for water clouds
 - Significant for ice cloud

Simulations of expected uncertainty

Validation of Cloud uncertainty

- Many cloud parameters
 - Optical depth, effective radius, Ice and liquid water path, height, albedo, mask, phase
- Not many accurate validation sources.
 - Poor statistics
 - Require careful interpretation

Validation of phase using Calipso

New treatment of phase

L3 uncertainty

Diurnal cycles

FIG. 1. Equatorial crossing time of the NOAA and MetOp polar-orbiting satellite series spanning 1981–2010.

L3 uncertainty

- When forming monthly means, what is the role of natural variability versus errors/ uncertainties in the observations?
- How do correlations in L2 uncertainties affect the L3 data?

Bennartz visiting scientist report

L3 uncertainty

$$\sigma_{TRUE}^2 = \sigma_{STD}^2 - (1 - c) \langle \sigma_i^2 \rangle$$

- Where 'TRUE' is the natural variability
- 'STD' the variability measured (include natural +noise)
- Observation uncertainty $\left\langle \boldsymbol{\sigma}_{i}^{2}\right\rangle$
- C the correlation
 - Uncorrelated: c=0
 - Perfectly correlated: c=1

From Bennartz report on L3 uncertainty

Systematic Uncertainty L2 > L3

Example: Multi layer cloud

What will we report in L3 data

- Generation L3 products with
 - The standard deviation of the pixels;
 - The propagation of pixel uncertainties into the average value
- Generation of histograms (consistent with ISCCP histograms)
 - The standard deviation of the pixels;
 - The propagation of pixel uncertainties into the average value
 - Probability of multi layer cloud
- Is this too much?

What next?

- Work is underway to understand and express more uncertainty in Cloud CCI products.
- Exists a new group under ICWG (International Cloud Working Group) that will address uncertainty and validation
- Need to be clear how we communicate uncertainty
 - Could overwhelm users with to many diagnostics

