GHG-CCI satellite XCO$_2$: comparisons with global models

Will Hewson 1
Hartmut Bösch 1, Rob Parker 1
Michael Buchwitz and the GHG-CCI team

1Earth Observation Science, Dept. Physics and Astronomy, University of Leicester, U.K.

1400, 21st October, 2014
GHG-CCI Splinter Session: Model-data comparisons
ESRIN, Frascati, Italy
GHG-CCI partners
CO₂ and CH₄ – two most important anthropogenic GHGs. Reliable climate prediction requires good understanding of natural and anthropogenic (surface) CO₂ and CH₄ sources and sinks:

▶ Distribution?
▶ Magnitude?
▶ Climate change response?

Better understanding requires appropriate global observations and (inverse) modelling.
CO₂ and CH₄ – two most important anthropogenic GHGs.

Reliable climate prediction requires good understanding of natural and anthropogenic (surface) CO₂ and CH₄ sources and sinks:

- Distribution?
- Magnitude?
- Climate change response?

Better understanding requires appropriate global observations and (inverse) modelling.

Global distribution of atmospheric GHGs CO₂ and CH₄, of sufficient quality to estimate regional sources and sinks.
Retrieval procedure

Global satellite observations → Calibration (L0–L1) → Calibrated radiances → Retrieval (L1–L2) → Reference observations → Validation → Atmospheric GHG distributions → Improved information on GHG sources and sinks → Inverse modelling (L2–L4)

Small XCO₂ column gradients (column averaged CO₂ dry air mole fraction)):
- High precision to resolve small CO₂ source / sink (0.2–0.3%) variations.
- High accuracy essential to avoid regional-scale biases (<0.15%).
GHG-CCI ECV products

<table>
<thead>
<tr>
<th>Algorithm ID</th>
<th>Type</th>
<th>Data product</th>
<th>Institution / algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2_SCI_BESD</td>
<td>ECA</td>
<td>XCO₂ from SCIAMACHY</td>
<td>IUP, Univ. Bremen, FP algorithm BESD</td>
</tr>
<tr>
<td>CO2_SCI_WFMD</td>
<td>ECA</td>
<td>XCO₂ from SCIAMACHY</td>
<td>IUP, Univ. Bremen, PR algorithm WFM-DOAS</td>
</tr>
<tr>
<td>CO2_GOS_OCFP</td>
<td>ECA</td>
<td>XCO₂ from GOSAT</td>
<td>Univ.Leicester (ULE), FP algorithm (OCO algo.)</td>
</tr>
<tr>
<td>CO2_GOS_SRFP</td>
<td>ECA</td>
<td>XCO₂ from GOSAT</td>
<td>SRON, FP algorithm of SRON</td>
</tr>
<tr>
<td>CH4_SCI_WFMD</td>
<td>ECA</td>
<td>XCH₄ from SCIAMACHY</td>
<td>IUP, Univ. Bremen, PR algorithm WFM-DOAS</td>
</tr>
<tr>
<td>CH4_SCI_IMAP</td>
<td>ECA</td>
<td>XCH₄ from SCIAMACHY</td>
<td>SRON, PR algorithm IMAP</td>
</tr>
<tr>
<td>CH4_GOS_OCFP</td>
<td>ECA</td>
<td>XCH₄ from GOSAT</td>
<td>Univ.Leicester (ULE), FP algorithm (adjusted OCO algo.)</td>
</tr>
<tr>
<td>CH4_GOS_SRPR</td>
<td>ECA</td>
<td>XCH₄ from GOSAT</td>
<td>SRON, PR algorithm for GOSAT XCH₄</td>
</tr>
<tr>
<td>CH4_GOS_SRFP</td>
<td>ECA</td>
<td>XCH₄ from GOSAT</td>
<td>SRON, FP algorithm for GOSAT XCH₄</td>
</tr>
</tbody>
</table>

Table S-1: Overview GHG-CCI ECV Core Algorithms (ECAs).
The achieved accuracy and precision of the various (ECA) data products has to be compared with the user requirements for XCO$_2$ and XCH$_4$, which are formulated in the GHG-CCI User Requirements Document (URD GHG-CCI v1), available from the GHG-CCI website.

The performance in terms of accuracy and precision has been estimated using various approaches including analysis of simulations, comparison with ground-based observations as performed by the GHG-CCI retrieval team (note that an independent validation is being performed in parallel by the independent validation team), comparisons with models, and inter-comparisons of the data products generated with the different GHG-CCI algorithms and algorithms developed elsewhere, most notably with the official GOSAT data products generated by NIES, Japan, and with the NASA ACOS-team XCO$_2$ data product.

Based on the analysis performed, which is described in this document, the achieved accuracy and precision of the various data products are listed in Table S-3 for XCO$_2$ and Table S-4 for XCH$_4$. The following abbreviations have been used: NA = Not Assessed, DP = Data Provider comparison/assessment method, EMMA = Assessment method used in the context of the evaluation of the EMMA ensemble product (as described in Section 12). As can be seen, not all requirements have been met yet.

Current estimates of achieved data quality: XCO$_2$ (in ppm)

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Algorithm</th>
<th>Precision Single observation</th>
<th>Precision Regional / monthly</th>
<th>Relative accuracy</th>
<th>Method / comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIAMACHY</td>
<td>BESD v01.00.01</td>
<td>2.5</td>
<td>NA</td>
<td>0.8</td>
<td>DP (IUP, Section 7.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.3</td>
<td>1.5</td>
<td></td>
<td>EMMA (Section 12.5)</td>
</tr>
<tr>
<td>SCIAMACHY</td>
<td>WFMD v2.2</td>
<td>3.8</td>
<td>1.6</td>
<td>0.8</td>
<td>DP (IUP, Section 7.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.4</td>
<td>2.0</td>
<td></td>
<td>EMMA (Section 12.5)</td>
</tr>
<tr>
<td>GOSAT</td>
<td>OCFP v3.0</td>
<td>2.7</td>
<td>0.2</td>
<td>0.8</td>
<td>DP (ULE, Section 7.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.3</td>
<td>1.6</td>
<td></td>
<td>EMMA (Section 12.5)</td>
</tr>
<tr>
<td>GOSAT</td>
<td>SRFP v1.1</td>
<td>2.6</td>
<td>NA</td>
<td>1.0</td>
<td>DP (SRON, Section 7.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5</td>
<td>1.0</td>
<td></td>
<td>EMMA (Section 12.5)</td>
</tr>
<tr>
<td>SCIAMACHY and GOSAT</td>
<td>EMMA v1.3a</td>
<td>3.1</td>
<td>0.8</td>
<td>0.8</td>
<td>EMMA (Section 12.5)</td>
</tr>
<tr>
<td>Required:</td>
<td>< 8.0</td>
<td>< 1.3</td>
<td>< 0.5</td>
<td></td>
<td>/URD GHG-CCI v1/</td>
</tr>
</tbody>
</table>
GHG-CCI ECV products

GHG-CCI

Carbon Dioxide SCIAMACHY/WFMD

2012 04

XCO₂ [ppm]

380 387 394 401 408

Mean Uncertainty [ppm]

0.0 1.2 2.4 3.6 4.8

StdDev [ppm]

0.0 1.2 2.4 3.6 4.8

Nobs

CRDP#1 WFMD_v3.3 MB/2013/07/08 Nobs:min= 9 grid: 10x10
Considerations for direct comparison of satellite and model data:

- Vertical sensitivity of satellite observations, and retrieval dependence on a-priori.
- Apply averaging kernel A to model output (x_{model}) to simulate instrument sensitivity to atmosphere x_{a}:
 \[x = x_{a} + A(x_{model} - x_{a}) \]
- Spatio-temporal interpolation between grids.
- Vertical interpolation especially careful, model and retrieval on different grids:
 - Interpolation of VMR will not maintain total column.
 - Layer vs level.
Considerations for direct comparison of satellite and model data: Vertical sensitivity of satellite observations, and retrieval dependence on a-priori.

Apply averaging kernel A to model output (x_{model}) to simulate instrument sensitivity to atmosphere x_a:

$$X = X_a + A(x_{\text{model}} - x_a) \quad (1)$$
Considerations for direct comparison of satellite and model data: Vertical sensitivity of satellite observations, and retrieval dependence on a-priori. Apply averaging kernel A to model output (x_{model}) to simulate instrument sensitivity to atmosphere x_a:

$$X = X_a + A(x_{model} - x_a)$$

Spatio-temporal interpolation between grids. Vertical interpolation especially careful, model and retrieval on different grids:

- Interpolation of VMR will not maintain total column.
- Layer vs level.
Satellite assessment

UoL GOSAT FP (obs.) vs. Edinburgh GEOS-Chem (model)

Max. model–data Δ in regions where both models and satellite data are uncertain (no validation; high cirrus + aerosols loads).
Sampled for satellite location, AKs applied.

Note large spread between models.
Model assessment – satellite

UoL GOSAT FP vs. model ensemble mean

GOSAT – model mean Δ comparable to Δ between individual models and model mean
Model assessment – satellite

UoL GOSAT FP and IUP Bremen SCIAMACHY FP vs. model ensemble mean

S. Asia: Stronger annual cycle or bias in Satellite data? Australia: Influence of Indonesian fires?

Satellite datasets agree on locations and time of uncertainty… capturing events missed by models?
Ensemble median algorithm (EMMA) combines individual soundings of 7 ECAs into one new data set.

Takes advantage of ECAs’ independent developments, less influenced by regional and temporal biases of individual algorithms.

Reuter et al., ACP 13-4, 2013:
http://dx.doi.org/10.5194/acp-13-1771-2013
EMMA – retrieval ensemble
EMMA – retrieval ensemble

Regional bias - ensemble spreads (std. dev. of algorithms) < 1 ppm, rising to 2 ppm in Tropics and East Asia.

EMMA tends to better agree with validation data (TCCON).
Many geographical regions where models are poorly constrained by surface measurements:

- Models might not well reproduce regional carbon cycle and year-to-year variations, or miss specific events.

Satellite XCO₂ data should help to assess and improve models if they have sufficient accuracy and can be properly validated for these regions.

CO₂ models show good consistency (with notable regional differences). Model data represents a reasonable dataset for testing satellite column data.