Using satellite-derived surface temperatures for atmospheric boundarylayer studies

A. Grau, M. A. Jiménez and J. Cuxart Universitat de les Illes Balears, Palma, Mallorca, Spain

LST_cci User Workshop 2020, 25th June 2020

Brief description of the studies presented here

* Statistical characterisation of the sea-breeze physical mechanisms through in-situ and satellite observations (1)OC, 2020). The thermal difference (LST-SST) under SB conditions in the Palma basin (Balearic Islands) is analysed.

* Generation of chilling hours maps using surface observations and satellite data (AR, 2020). The areas with higher/lower CH in Mallorca are characterised, important for agricultural applications.

Data used

Source	Period	Resolution
MSG (LSA SAF and OSI SAF)	2009/17	4km x 4km (hourly)
AEMET	2009/17	hourly
ECMWF	2009/17	Hourly, closest gridpoint

1. The Sea-Breeze in the Palma Basin

 $< LST > \equiv$ Averaged Land Surface Temperature $\langle SST \rangle \equiv$ Averaged Sea Surface Temperature

thermal difference $\equiv \Delta T =$ < LST > - < SST >

* We computed the thermal

100 Abbreviations: Airport (A), University (U), European Center for Medium-Range Weather Forecasts (ECMWF)

Land and Sea Surface Temperature LST SS7 2009-17 2009-17 12 · 12 - 40 - 26 11 11 - 35 10 10 24 9 9 - 30 22 8 8 - 25 -TST (°, C) ΰ month month 20 TSS 6 6 - 20 5 -5 18 4 Δ - 15 3 3 - 16 - 10 2 2 50 14 0400400000000400400000000 HHHHHHHHNNNN нананананомом hour (UTC) hour (UTC) 40 2009-17 () 0° 30 12 - 15 UTC 11 15 - 10 10 1 9 12 5 ΰ ٨ 8 0 ٮ ⊢ 0 month SST v 0 10 6 1 Ŋ -5 Δ 0 3 -10ō 0 0 -152009 2010 040240028004084002800408 нананананомо hour (UTC)

hourly averages of spatiallyaveraged temperatures per month

> box-plot of the averaged LST, SST and the corresponding difference

Sea-breeze method

* F1: Wind direction $\checkmark 180^{\circ} \leq WD_A(12 \rightarrow 15 \text{ UTC}) \leq 270^{\circ}$ * F2: Large-scale wind $\checkmark 135^{\circ} \leq WD_U(12 \rightarrow 15 \text{ UTC}) \leq 225^{\circ}$ $\checkmark < WS_A > < 8 \text{ ms}^{-1}$ * F3: Wind reversal $\checkmark MR_A \epsilon [06, 12 UTC]$ $\checkmark MR_A - SR \ge 1h$ $\checkmark AR_A \epsilon [18, 00 UTC]$

* F4: Wind speed increasing after veering $\checkmark WS_A(MR_A + 2h) - WS_A(MR_A - 1h) > 0 \ ms^{-1}$

* F5: Precipitation $\checkmark P_{dav} = 0$

WD = Wind Direction <X> = X avg 12-15 UTC $X_{A/U} = X$ at airport/university WS = Wind Speed MR = Morning Reversal SR = SunRise AR = Afternoon Reversal

Thermal difference under SB conditions

 $\Delta T > 5^{\circ}C$ under Sea-breeze conditions

Physical Mechanisms under SB conditions

Afternoon Reversal (AR), Wind Speed (WS), Wind Direction (WD)

2. Chilling hours map

-> MSG: LST -> T2m (Simó et al., 2018)

Symbology: plain (circles), coast (diamonds), foothills (squares) and mountains (triangles).

CH annual variability

- * The inter-annual variability may exceed the 20% between the years, although the ranking from coldest to warmest is maintained during almost the entire period.
- * We find a high correlation between the winter average of temperature (see top panel) and the CH accumulation, specially those years in which this average reach an extrema.

Comparison between the estimated CH (from MSG and AWS)

* The locations where differences are larger may be due to the special location of the AWS, not necessarily representative of the area covered by a MSG pixel probably related to the local features.

CH-map generation

Annual average of CH counting from MSG -LST fields.

Percentage of points (those of the left map) contributing to the amount of CH counting.

- * The largest CH are placed in the bottom parts of the 3 main basins.
- * CH tend to accumulate from Oct to May (specially in winter) and nighttime.

Conclusions

1. The combined analysis of the AWS and satellite surface temperatures under SB conditions shows that the thermal gradient:

-> is equal or larger than 5°C

-> is important but other mechanisms are relevant: large-scale winds, soil moisture, locally-generated winds (upslope).

2. A methodology is proposed to compute a CH map for agricultural applications.

-> the coldest regions are placed in the bottom parts of the basin where cold pools are likely to form,

-> from the inspection of the CH maps from the years with available LST is it possible to determine its variability,

-> this methodology can be applied to other regions.

Acknowledgments

G CONSELLERIA O AGRICULTURA, I PESCA I ALIMENTACIÓ B